Procédures optimales fondées sur les rangs multivariés

Davy Paindaveine

Journal de la société française de statistique (2003)

  • Volume: 144, Issue: 4, page 25-66
  • ISSN: 1962-5197

How to cite

top

Paindaveine, Davy. "Procédures optimales fondées sur les rangs multivariés." Journal de la société française de statistique 144.4 (2003): 25-66. <http://eudml.org/doc/198646>.

@article{Paindaveine2003,
author = {Paindaveine, Davy},
journal = {Journal de la société française de statistique},
language = {fre},
number = {4},
pages = {25-66},
publisher = {Société française de statistique},
title = {Procédures optimales fondées sur les rangs multivariés},
url = {http://eudml.org/doc/198646},
volume = {144},
year = {2003},
}

TY - JOUR
AU - Paindaveine, Davy
TI - Procédures optimales fondées sur les rangs multivariés
JO - Journal de la société française de statistique
PY - 2003
PB - Société française de statistique
VL - 144
IS - 4
SP - 25
EP - 66
LA - fre
UR - http://eudml.org/doc/198646
ER -

References

top
  1. [1] BROCKWELL P. J. et DAVIS R.A. (1987), Time Series: Theory and Methods, Springer, New York. Zbl0604.62083MR868859
  2. [2] CHERNOFF H. et SAVAGE I.R. (1958), Asymptotic normality and efficiency of certain nonparametric tests, Ann. Math. Statist. 29, 972-994. Zbl0092.36501MR100322
  3. [3] CHOI S., HALL W.J. et SCHICK A. (1996), Asymptotically uniformly most powerful tests in parametric and semiparametric models, Ann. Statist. 24, 841-861. Zbl0860.62020MR1394992
  4. [4] GAREL B. et HALLIN M. (1995), Local asymptotic normality of multivariate ARMA processes with a linear trend, Ann. Inst. Statist. Math. 47, 551-579. Zbl0841.62076MR1364260
  5. [5] GAREL B. et HALLIN M. (1999), Rank-based AR order identification, J. Amer. Statist. Assoc. 94, 1357-1371. Zbl0994.62089MR1731496
  6. [6] GENOT CATALOT V. et PICARD D. (1993), Éléments de Statistique asymptotique, Springer-Verlag, Paris. Zbl0875.62002MR1618701
  7. [7] HALLIN M. (1986), Non-stationary q-dependent processes and time-varying moving-average models: invertibility properties and the forecasting problem, Adv. Appl. Prob. 18, 170-210. Zbl0597.62096MR827335
  8. [8] HALLIN M. (1994), On the Pitman-nonadmissibility of correlogram-based methods, Jour. Time Series Anal. 15, 607-612. Zbl0807.62068MR1312324
  9. [9] HALLIN M., INGENBLEEK J.-Fr et PURI M.L. (1985), Linear serial rank tests for randomness against ARMA alternatives, Ann. Statist. 13, 1156-1181. Zbl0584.62064MR803764
  10. [10] HALLIN M., INGENBLEEK J.-Fr et PURI M.L. (1989), Asymptotically most powerful rank tests for multivariate randomness against seriai dependence, J. Multivariate Anal. 30, 34-71. Zbl0685.62047MR1003708
  11. [11] HALLIN M. et MÉLARD G. (1988), Rank-based tests for randomness against first-order serial dependence, J. Amer. Statist. Assoc. 83, 1117-1128. MR997590
  12. [12] HALLIN M. et PAINDAVEINE D. ( 2002a), Optimal tests for multivariate location based on interdirections and pseudo-Mahalanobis ranks, Ann. Statist. 30, 1103-1133. Zbl1101.62348MR1926170
  13. [13] HALLIN M. et PAINDAVEINE D. ( 2002b), Optimal procedures based on interdirections and pseudo-Mahalanobis ranks for testing multivariate elliptic white noise against ARMA dependence, Bernoulh 8, 787-816. Zbl1018.62046MR1963662
  14. [14] HALLIN M. et PAINDAVEINE D. ( 2002c), Multivariate signed ranks: Randles' interdirections or Tyler's angles? In Y. Dodge, Ed., Statistical Data Analysis Based on the L1 Norm and Related Procedures, Birkhauser, Basel, 271-282. Zbl1145.62339MR2001322
  15. [15] HALLIN M. et PAINDAVEINE D. (2003), Affine invariant linear hypotheses for the multivariate general linear model with VARMA error terms. In M. Moore, S. Froda, and Chr. Léger, Eds, Mathematical Statistics and Applications : Festschrift for Constance van Eeden, I.M.S. Lecture Notes-Monograph Series, I.M.S., Hayward, California, 417-434. MR2138306
  16. [16] HALLIN M. et PAINDAVEINE D. ( 2004a), Rank-based optimal tests of the adequacy of an elliptic VARMA model, Ann. Statist, à paraître. Zbl1076.62044MR2153998
  17. [17] HALLIN M. et PAINDAVEINE D. ( 2004b), Asymptotic linearity of serial and nonserial multivariate signed rank statistics, soumis. Zbl1082.62049
  18. [18] HALLIN M. et PAINDAVEINE D. ( 2004c), Affine invariant aligned rank tests for the multivariate general linear model with ARMA errors, J. Multivariate Anal., à paraître. Zbl1087.62098MR2119768
  19. [19] HALLIN M. et PAINDAVEINE D. ( 2004d), Multivariate signed rank tests in vector autoregressive order identification, Statistical Science, à paraître. Zbl1100.62577MR2185591
  20. [20] HALLIN M. et PURI M.L. (1988), Optimal rank-based procedures for time-series analysis: testing an ARMA model against other ARMA models, Ann. Statist. 16, 402-432. Zbl0659.62111MR924878
  21. [21] HALLIN M. et PURI M.L. (1991), Time-series analysis via rank-order theory: signed-rank tests for ARMA models, J. Multivariate Anal. 39, 1-29. Zbl0751.62041MR1128669
  22. [22] HALLIN M. et PURI M.L. (1994), Aligned rank tests for linear models with autocorrelated error terms, J. Multivariate Anal. 50, 175-237. Zbl0805.62050MR1293044
  23. [23] HALLIN M. et PURI M.L. (1994), A multivariate Wald-Wolfowitz rank test against serial dependence, Canadian J. Statist. 23, 55-65. Zbl0821.62022MR1340961
  24. [24] HALLIN M. et TRIBEL O. (2000), The efficiency of some nonparametric competitors to correlogram-based methods. In F.T. Bruss and L. Le Cam, Eds, Game Theory, Optimal Stopping, Probability, and Statistics, Papers in honor of T. S. Ferguson on the occasion of his 70th birthday, I.M.S. Lecture Notes-Monograph Series, I.M.S., Hayward, California, 249-262. Zbl0980.62036MR1833863
  25. [25] HALLIN M. et WERKER B.J.M. (1999), Optimal testing for semi-parametric AR models: from Gaussian Lagrange multipliers to autoregression rank scores and adaptive tests. In S. Ghosh, Ed., Asymptotics, Nonparametrics, and Time Series, M. Dekker, New York, 295-350. Zbl1069.62541MR1724702
  26. [26] HALLIN M. et WERKER B.J.M. (2003), Semiparametric efficiency, distribution-freeness, and invariance, Bernoulli 9, 55-65. Zbl1020.62042MR1963675
  27. [27] HANNAN E. J. (1970), Multiple Time series, J. Wiley, New York. Zbl0211.49804MR279952
  28. [28] HETTMANSPERGER T. P., NYBLOM J. et OJA H. (1994), Affine invariant multivariate one-sample sign tests, J. Roy. Statist. Soc. Ser. B 56, 221-234. Zbl0795.62055MR1257809
  29. [29] HETTMANSPERGER T. P., MOTTONEN J. et OJA H. (1997), Affine invariant multivariate one-sample signed-rank tests, J. Amer. Statist. Assoc. 92, 1591-1600. Zbl0943.62051MR1615268
  30. [30] HODGES J. L. et LEHMANN E.L. (1956), The efficiency of some nonparametric competitors of the t-test, Ann. Math. Statist. 27, 324-335. Zbl0075.29206MR79383
  31. [31] L E CAM L. (1986), Asymptotic Methods in Statistical Decision Theory, Springer-Verlag, New York. Zbl0605.62002MR856411
  32. [32] MOTTONEN J. et OJA H. (1995), Multivariate spatial sign and rank methods, J. Nonparam. Statist. 5, 201-213. Zbl0857.62056MR1346895
  33. [33] MOTTONEN J., OJA H. et TIENARI J. (1997), On the efficiency of multivariate spatial sign and rank methods, Ann. Statist. 25, 542-552. Zbl0873.62048MR1439313
  34. [34] MOTTONEN J., HETTMANSPERGER T.P., OJA H. et TIENARI J. (1998), On the efficiency of the multivariate affine invariant rank methods, J. Multivariate Anal. 66, 118-132. Zbl1127.62361MR1648529
  35. [35] OJA H. (1999), Affine invariant multivariate sign and rank tests and corresponding estimates: a review, Scand. J. Statist. 26, 319-343. Zbl0938.62063MR1712063
  36. [36] OJA H. et PAINDAVEINE D. (2004), Optimal testing procedures based on hyperplanes, soumis. 
  37. [37] PETERS D. et RANDLES R.H. (1990), A multivariate signed-rank test for the one-sample location problem, J. Amer. Statist. Assoc. 85, 552-557. Zbl0709.62051MR1141757
  38. [38] PURI M. L. et SEN P.K. (1971), Nonparametric Methods in Multivariate Analysis, J. Wiley, New York. Zbl0237.62033MR298844
  39. [39] RANDLES R.H. (1989), A distribution-free multivariate sign test based on interdirections, J. Amer. Statist. Assoc. 84, 1045-1050. Zbl0702.62039MR1134492
  40. [40] RANDLES R.H. (2000), A simpler, affine-invariant, multivariate, distribution-free sign test, J. Amer. Statist. Assoc. 95, 1263-1268. Zbl1009.62047MR1792189
  41. [41] RANDLES R.H. et UM Y. (1998), Nonparametric tests for the multivariate multisample location problem, Statistica Sinica 8, 801-812. Zbl0905.62048MR1651509
  42. [42] TYLER D. E. (1987), A distribution-free M-estimator of multivariate scatter, Ann. Statist. 15, 234-251. Zbl0628.62053MR885734

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.