Sélection bayésienne de variables en régression linéaire

Gilles Celeux; Jean-Michel Marin; Christian Robert

Journal de la société française de statistique (2006)

  • Volume: 147, Issue: 1, page 59-79
  • ISSN: 1962-5197

How to cite

top

Celeux, Gilles, Marin, Jean-Michel, and Robert, Christian. "Sélection bayésienne de variables en régression linéaire." Journal de la société française de statistique 147.1 (2006): 59-79. <http://eudml.org/doc/198833>.

@article{Celeux2006,
author = {Celeux, Gilles, Marin, Jean-Michel, Robert, Christian},
journal = {Journal de la société française de statistique},
language = {fre},
number = {1},
pages = {59-79},
publisher = {Société française de statistique},
title = {Sélection bayésienne de variables en régression linéaire},
url = {http://eudml.org/doc/198833},
volume = {147},
year = {2006},
}

TY - JOUR
AU - Celeux, Gilles
AU - Marin, Jean-Michel
AU - Robert, Christian
TI - Sélection bayésienne de variables en régression linéaire
JO - Journal de la société française de statistique
PY - 2006
PB - Société française de statistique
VL - 147
IS - 1
SP - 59
EP - 79
LA - fre
UR - http://eudml.org/doc/198833
ER -

References

top
  1. BREIMAN L. et FRIEDMAN J.(1985). Estimating optimal transformations for multiple regression and correlation. J. American Statist. Assoc., pages 580-598. Zbl0594.62044MR803258
  2. BROWN P., VANNUCCI M. et FEARN T.(1998). Multivariate Bayesian variable selection and prediction. J. Royal Statist. Soc. Series B, pages 627-641. Zbl0909.62022MR1626005
  3. BURNHAM K. et ANDERSON D.(2002). Model selection and multi-model inference. Springer-Verlag. MR1919620
  4. CASELLA G. et MORENO E.(2004). Objective Bayesian Variable Selection. Rapport technique, University of Florida. Zbl1118.62313
  5. CHIPMAN H.(1996). Bayesian Variable Selection with Related Predictors. Canadian Journal of Statistics, 1 :17-36. Zbl0849.62032MR1394738
  6. DAWID A. et LAURITZEN S.(2000). Compatible prior distribution. In Bayesian Methods with Application to Science Policy and Offcial Statistics. The sixth world meeting of the ISBA, pages 109-118. 
  7. GEORGE E.(2000). The Variable Selection Problem. J. American Statist. Assoc., 95 :1304-1308. Zbl1018.62050MR1825282
  8. GEORGE E. et MCCULLOCH R.(1993). Variable Selection Via Gibbbs Sampling. J. American Statist. Assoc., 88 :881-889. 
  9. GEORGE E. et MCCULLOCH R.(1997). Approaches to Bayesian Variable selection. Statistica Sinica, 7 :339-373. Zbl0884.62031
  10. GEWEKE J.(1994). Variable Selection and Model Comparison in Regression. Rapport technique, University of Minnesota. MR1425430
  11. IBRAHIM G.(1997). On properties of Predictive Priors in Linears Models. The American Statistician, 51(4) :333-337. MR1484784
  12. IBRAHIM G. et LAUD P.(1994). A Predictive Approach to the Analysis of Designed Experiments. J. American Statist. Assoc., 89(425) :309-319. Zbl0791.62080MR1266302
  13. KOHN R., SMITH M. et CHAN D.(2001). Nonparametric regression using linear combinations of basis functions. Statistics and Computing, 11 :313-322. MR1863502
  14. LAURITZEN S.(1996). Graphical Models. Oxford University Press. Zbl0907.62001MR1419991
  15. LEBARBIER E. et MARY-HUARD T.(2006). Une introduction au critère BIC : fondements théoriques et interprétation. Journal de la Société Française de Statistique, 147(1) :39-57. MR2500590
  16. LEUCARI V. et CONSONNI G.(2003). Compatible priors for causal Bayesian networks. In Bayesian Statistics 7, pages 597-606. Oxford University Press, Oxford. MR2003524
  17. MADIGAN D., RAFTERY A. et HOETING J.(1997). Bayesian model averaging for linear regression models. J. American Statist. Assoc., 92 :179-191. Zbl0888.62026MR1436107
  18. MARIN J.-M.(2006). Conjugate compatible prior distributions. Soumis. 
  19. MARIN J.-M. et ROBERT C.(2006). The Bayesian Core : A Practical Approach to Computational Bayesian Statistics. Springer-Verlag. À paraître. Zbl1137.62013MR2289769
  20. MILLER A.(1990). Subset Selection in Regression. Chapman and Hall. Zbl0702.62057MR1072361
  21. MITCHELL T. et BEAUCHAMP J.(1988). Bayesian Variable Selection in Linear Regression. J. American Statist. Assoc., 83 :1023-1032. Zbl0673.62051MR997578
  22. NOTT D. J. et GREEN P. J.(2004). Bayesian Variable selection and the Swendsen-Wang Algorithm. J. Comput. Graph. Statist., 13 :1-17. MR2044875
  23. PHILIPS R. et GUTTMAN I.(1998). A new criterion for variable selection. Statist. Prob. Letters, 38 :11-19. Zbl0915.62015MR1629488
  24. ROBERT C.(2006). Le Choix Bayésien : Principes et Implémentation. Springer-Verlag. 
  25. ROVERATO A. et CONSONNI G.(2004). Compatible Prior Distributions for DAG models. J. Royal Statist. Soc. Series B, 66 :47-61. Zbl1062.62050MR2035758
  26. SCHNEIDER U. et CORCORAN J.(2004). Perfect sampling for Bayesian variable selection in a linear regression model. J. Statist. Plann. Inference, 126 :153-171. Zbl1072.62019MR2090691
  27. SMITH M. et KOHN R.(1996). Nonparametric regression using Bayesian variable selection. Journal of Econometrics, 75 :317-343. Zbl0864.62025
  28. TOMASSONE R., AUDRAIN S., LESQUOY E. et MILLIER C.(1992). La Régression : nouveaux regards sur une ancienne méthode statistique. Masson, 2 édition. Zbl0788.62058
  29. TOMASSONE R., DERVIN C. et MASSON J.-P.(1993). Biométrie : modélisation de phénomènes biologiques. Masson. Zbl0789.62091
  30. ZELLNER A.(1986). On assessing Prior Distributions and Bayesian Regression analysis with g-prior distribution regression using Bayesian variable selection. In Bayesian inference and decision techniques : Essays in Honor of Bruno De Finetti, pages 233-243. North-Holland/Elsevier. Zbl0655.62071MR881437

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.