La maîtrise des incertitudes dans un contexte industriel. 2nde partie : revue des méthodes de modélisation statistique physique et numérique

Étienne De Rocquigny

Journal de la société française de statistique (2006)

  • Volume: 147, Issue: 3, page 73-106
  • ISSN: 1962-5197

How to cite

top

De Rocquigny, Étienne. "La maîtrise des incertitudes dans un contexte industriel. 2nde partie : revue des méthodes de modélisation statistique physique et numérique." Journal de la société française de statistique 147.3 (2006): 73-106. <http://eudml.org/doc/199087>.

@article{DeRocquigny2006,
author = {De Rocquigny, Étienne},
journal = {Journal de la société française de statistique},
language = {fre},
number = {3},
pages = {73-106},
publisher = {Société française de statistique},
title = {La maîtrise des incertitudes dans un contexte industriel. 2nde partie : revue des méthodes de modélisation statistique physique et numérique},
url = {http://eudml.org/doc/199087},
volume = {147},
year = {2006},
}

TY - JOUR
AU - De Rocquigny, Étienne
TI - La maîtrise des incertitudes dans un contexte industriel. 2nde partie : revue des méthodes de modélisation statistique physique et numérique
JO - Journal de la société française de statistique
PY - 2006
PB - Société française de statistique
VL - 147
IS - 3
SP - 73
EP - 106
LA - fre
UR - http://eudml.org/doc/199087
ER -

References

top
  1. [1] APOSTOLAKIS G. (1999), The distinction between aleatory and epistemic uncertainties is important ; an example from the inclusion of aging effects in the PSA, PSA'99, Washington DC. 
  2. [2] ARDILLON E., & de ROCQUIGNY E. (2003), Probabilistic estimation of safety quantites for complex non-regular physical systems with uncertain parameters. Proc. 25th ESReDA Seminar, Paris. 
  3. [3] BEAUDOUIN F., MUNIER B., SERQUIN Y. (1997), Multiattribute utility theory : Towards a more general framework, Proc. of the 1997 ESReDA seminar on decision analysis and its applications in safety and reliability. Zbl1012.90016
  4. [4] BESTION D. (2003), Final Report -§ 4.2 State of the Art on Uncertainty Evaluation, European Project for Future Advances in Sciences and Technology for Nuclear Engineering Thermal-Hydraulics (EUROFASTNET). 
  5. [5] BOX G.E.P and DRAPER N.R (1987), Empirical Model Building and Response Surface, J. Wiley & Sons, Wiley Series in Probability and Mathematical statistics. Zbl0614.62104MR861118
  6. [6] BOYACK B.E. (1990), Quantifying reactor safety margins-part I : an overview of the code scaling, applicability and uncertainty evaluation methodology, Nucl. Eng. Des. 119, 1-15. 
  7. [7] CAMBIER S. (2000), Approche probabilité pour la prise en compte de la dispersion de paramètres mécaniques - Application à la fatigue vibratoire de réseaux de tuyauteries, Thèse ENSAM Paris. 
  8. [8] CAMBIER S., DESCELIERS C., SOIZE S. (2003), Prise en compte probabiliste des incertitudes dans l'estimation du comportement sismique d'un circuit primaire. 7ème Colloque National AFPS. 
  9. [9] CAMBIER S., GUIHOT P., COFFIGNAL G. (2002), Computational methods for accounting of structural uncertainties, applications to dynamic behavior prediction of piping systems. Structural Safety, 24 : 29-50. 
  10. [10] CHIA C.-Y., AYYUB B.-M. (1994), Conditional sampling for simulation-based structural reliability assessment, Structural Safety et reliability, Schueller, Schonzuka & Yao (eds), Balkema, Rotterdam. 
  11. [11] CHICK S.E. (2000), Bayesian Methods for Simulation, Proc. of the 2000 Winter Simulation Conference, Washington D.C. 
  12. [12] CORRE B. (2003), Problématique des incertitudes en exploration-production pétrolière : application des plans d'expériences. Total Fina Elf, Séminaire « Plans d'Expériences Numériques » Ec. Mines St-Etienne. 
  13. [13] CUKIER R.I., LEVINE H.B., SCHULER K.E. (1978). Non-linear sensitivity analysis of multi-parameter model systems. Journal of computational physics 26, 1-42. Zbl0369.65023MR465355
  14. [14] DE CRÉCY A. (1997), CIRCE : a tool for calculating the uncertainties of the constitutive relationships of Cathare2, 8th International Topical Meeting on Nuclear reactor Thermo-Hydraulics (NURETH8), Kyoto. 
  15. [15] DEMPSTER A. P. (1967). Upper and lower probabilities induced by a multivalued mapping, Annals of Math. Statistics 38, 325-339. Zbl0168.17501MR207001
  16. [16] DEMPSTER F., LAIRD N.M., RUBIN D.B. (1977), Maximum likelihood from incomplete data from the EM algorithm, Journal of the Royal Statistical Society (Ser. B) 39, 1-38. Zbl0364.62022MR501537
  17. [17] DE ROCQUIGNY E. (2005), A simple Bayesian proposal to aggregate expert judgement and observations on epistemic and aleatory uncertainties - extensions and associated industrial needs, Proc. of the Workshop on the Use of Expert Judgment in Decision-Making, CEA & Eur. Comm. JRC Petten, Aix-en-Provence. 
  18. [18] DE ROCQUIGNY E. (2005), A statistical approach to control conservatism of robust uncertainty propagation methods ; application to accidental thermal hydraulics calculations, Proceedings of ESREL-05, Tri City, Poland. 
  19. [19] DE ROCQUIGNY E. (2005), Couplage mécano-probabiliste pour la fiabilité des structures - un cas industriel où la robustesse d'une surface de réponse est démontrable. Actes du 17ème Congrès Français de Mécanique. Troyes. 
  20. [20] DE ROCQUIGNY E. (2004), Tutoriel Incertitudes, présenté dans la Conférence Lambda-Mu 14, Bourges, Octobre 2004. 
  21. [21] DE ROCQUIGNY E. (2006), Problèmes ouverts - Sujet n° 1 « Statistiques, mesures et calcul scientifique inverse», www.jds2006.fr/prob-ouverts.php 38èmes Journ. Franc, de Stat., Clamart, 2006. 
  22. [22] DESCELIERS C., SOIZE C., CAMBIER S. (2003), Nonparametric-parametric model for random uncertainties in nonlinear structural dynamics -Application to earthquake engineering, to earthquake engineering and Structural Dynamics, 33, 315-327. 
  23. [23] DEVICTOR N. (1996) Fiabilité et mécanique : méthodes FORM/SORM et couplages avec des codes d'éléments finis par surfaces de réponse adaptative. PhD Université Blaise Pascal, Clermont-Ferrand. 
  24. [24] DEVICTOR N., BOLADO LAVIN R. (eds) (2005), Proc. of the Workshop on the Use of Expert Judgment in Decision-Making, CEA & Eur. Comm. JRC Petten, Aix-en-Provence. 
  25. [25] DITLEVSEN O. & MADSEN H.O. (1996), Structural reliability Methods, John Wiley & Sons. 
  26. [26] DUBOIS D., PRADE H. (1988), Possibility theory : an approach to computerized processing of uncertainty, New York, Plenum Press. Zbl0703.68004MR1104217
  27. [27] DUCKSTEIN L., PARENT E. (1994), Engineering Risk in Natural Resources Management, NATO ASI Series. 
  28. [28] DUPUY J.P. (2002), Pour un catastrophisme éclairé - Quand l'Impossible est certain, Ed. du Seuil. 
  29. [29] DUTFOY A. (2001), Mefisto, The EDF Reliability Method to Propagate Uncertainties, Proc. of ICOSSAR 2001. 
  30. [30] DUTFOY A. (2000), Uncertainty propagation in radionuclide transport mo-delling for performance assessment of a nuclear waste repository, Proc. of PSAM5, Japan. 
  31. [31] EFRON B., TIBSHIRANI R.J. (1993), An introduction to the Bootstrap, Chapman & Hall. Zbl0835.62038MR1270903
  32. [32] FAURE C. (1996), Splitting of algebraic expressions for automatic differentiation, Proc. of the 2nd International Workshop on Computational Differentiation, 12-15 fév. 1996, Santa Fe. Zbl0871.65013
  33. [33] FREY H.C., RHODES D.S. (2005), Quantitative Analysis of Variability and Uncertainty in with Known Measurement Error : Methodology and Case Study, Risk Analysis Vol. 25, No3. 
  34. [34] GILLE-GENEST A. (1999), Utilisation des méthodes numériques probabilistes dans les applications au domaine de la Fiabilité des Structures, Thèse de l'Université Paris VI - EDF R&D. 
  35. [35] GRANGER MORGAN M., HENRION M. (1990), Uncertainty - A Guide to Dealing with Uncertainty in Quantitative Risk and Policy Analysis, Cambridge University Press. 
  36. [36] GRIEWANK A. (2000), Evaluating derivatives - Principles and Techniques of Algorithmic Differentiation, SIAM, Philadelphia. Zbl0958.65028MR1753583
  37. [37] HASCOUET L., PASCUAL V. (2004), TAPENADE 2.1 user's guide, INRIA report, www.inria.fr/rrrt/rt-0300.html 
  38. [38] HELTON J.C., BURMASTER D.E. et al. (1996), Treatment of Aleatory and Epistemic Uncertainty, Special Issue of Rel. Eng. & Syst. Saf., vol. 54 n°2 et 3. 
  39. [39] HELTON J.C., DAVIS F.J. (2003), Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems, Rel. Eng. & Syst. Saf. 81, 23-69. 
  40. [40] HELTON J.C., OBERKAMPF W.L. (2004), Alternative Representations of Epistemic Uncertainty, Special Issue of Rel. Eng. & Syst. Saf., vol. 85 n°l-3. 
  41. [41] HENRY Cl. (2004), Etat de la connaissance scientifique et mobilisation du principe de précaution, 3e Colloque international du réseau Monder, Paris, 12-15 sept.2004. 
  42. [42] IOOSS B., VAN DORPE F., and DEVICTOR N. (2006) Response Surfaces and Sensitivity Analysis for an Environmental Model of Dose Calculations. Rel. Eng. Sz Syst. Saf., à paraître. 
  43. [43] JACQUES J., LAVERGNE C., DEVICTOR N. (2006), Sensitivity Analysis in presence of model uncertainty and correlated outputs, Rel. Eng. and Syst. Saf., Elsevier, à paraître. 
  44. [44] JOURDAN A. (2002), Approches Statistiques des Expériences Simulées, Rev. Statistique Appliquée, L(1), 49-64. 
  45. [45] KENDALL MG. & STUART ( 1943-1979), A, The Advanced Theory of Statistics (2 vol), Griffin & Co., London. Zbl0249.62003
  46. [46] KLEIJNEN J.P.C. and SARGENT R.G. (2000), A methodology for fitting and validating metamodels in simulation, European Journal of Operational Research, 120, 14-29. Zbl0985.65007
  47. [47] KNIGHT F.H. (1921), Risk, Uncertainty and Profit, Hart, Schaffner & Marx. 
  48. [48] KUROWICKA D., and COOKE R.M. (2002), Techniques for generic probabilistic inversion, Probabilistic Safety Assessment and Management, E.J. Bonano et al. (eds), Elsevier, 1543-1550. 
  49. [49] KUSCHEL N., RACKWITZ R. (2000), Optimal design under time-variant reliability constraints, Structural Safety, Volume 22, Issue 2, 113-127. Zbl0972.90019
  50. [50] LANNOY A., et al. (1994), Méthodes avancées d'analyse des bases de données du retour d'expérience industriel, Coll. D.E.R.EDF, n°86, Eyrolles. 
  51. [51] LEBRUN R. (2006), Modelling dependency with copulas in reliability analysis, a new approach to the FORM and SORM methods, submitted to 8th PSAM Conference. 
  52. [52] LECOUTRE J.P., TASSI P. (1987), Statistique non paramétrique et robustesse, Economica. 
  53. [53] LEMAIRE M. (2005), Fiabilité des Structures, Coll. Génie Civil, Hermès-Lavoisier. 
  54. [54] MAHÉ P., de ROCQUIGNY E. (2005), Incertitudes non observables en calcul scientifique industriel - Etude d'algorithmes simples pour intégrer dispersion intrinsèque et ébauche d'expert, 37èmes Journ. Franc. de Stat., Pau, 2005. 
  55. [55] MCKAY M.D. (1996), Application of Variance-Based Methods to NUREG-1150 Uncertainty Analyses, USNRC 1996. 
  56. [56] MIQUEL J. (1984), Guide pratique d'estimation des probabilités de crues, Eyrolles. 
  57. [57] MYERS R.H. (1971), Response surface methodology, Allyn and Bacon, Inc., Boston. 
  58. [58] NELSEN R.B. (1999), An introduction to copulas, SPRINGER. Zbl0909.62052MR1653203
  59. [59] OLIVI L., (1984), Response surface methodology, Handbook for Nuclear Safety Analysis, J.R.C., European Commission. 
  60. [60] PENDOLA M. (2000), Fiabilité des Structures en contexte d'incertitudes statistiques et d'écarts de modélisation, Thèse de l'Université Clermont II. 
  61. [61] PERSOZ M., HUGONNARD-BRUYÈRE S., VENTURINI V., MEISTER E. (2000), Deterministic and probabilistic assessments of the reactor pressure vessel structural integrity with user-friendly software, ASME Press. Vess. &; Piping. 
  62. [62] PROCACCIA H., MORILHAT P. (1996), Fiabilité des structures des installations industrielles, Coll. D.E.R. EDF, n°94, Eyrolles. 
  63. [63] QUIGGIN J. (1982), A theory of anticipated utility, Journal of Economic Behavior and Organization, Vol. 3, pp. 323-343. 
  64. [64] REISS R.D., THOMAS M. (2001), Statistical Analysis of Extreme Values, Ed. Birkhauser. Zbl1002.62002MR1819648
  65. [65] ROYSET J.O., DER KIUREGHlAN A., and POLAK E. (2001), Reliability-based optimal structural design by the decoupling approach, Rel. Eng. & Syst. Saf., Vol. 73, Issue 3, pp. 213-221. 
  66. [66] ROWE W.D. (1994), Understanding Uncertainty, Risk Analysis, Vol. 14. n°5, pp. 743-750. 
  67. [67] RUBINSTEIN R.Y. (1981), Simulation and the Monte-Carlo Method, Wiley. Zbl0529.68076MR624270
  68. [68] SALTELLI A., BOLADO R. (1998), An alternative way to compute the Fourier Amplitude Sensitivity Test, Computational Statistics and data analysis, 26, 445-460. Zbl1042.65506
  69. [69] SALTELLI A., TARANTOLA S., CAMPALONGO F., RATTO M. (2004), Sensitivity analysis in practice : a guide to assessing scientific models, Wiley. Zbl1049.62112MR2048817
  70. [70] SAPORTA G. (1990), Probabilités, Analyse de Données et Statistique, Ed. Technip. Zbl0703.62003
  71. [71] SHANNON C. E., (1948), A mathematical theory of communication, Bell Systems Technical Journal, Vol. 27, pp. 379-423, 623-656. Zbl1154.94303MR26286
  72. [72] SOBOL I.M. (1993), Sensitivity estimates for non-linear mathematical models, Mathematical Modelling and Computational Experiments. Zbl1039.65505
  73. [73] SOIZE C. (2000), A non-parametric model of random uncertainties for reduced matrix models in structural dynamics, Probab. Engrg. Mech. 15 (3) 277-294. 
  74. [74] SUDRET B., GUÉDÉ Z., LEMAIRE M. (2005), Probabilistic assessment of thermal fatigue in nuclear components, Nucl. Eng. Des., 235, 219-235. 
  75. [75] SUDRET B., DER KIUREGHIAN A. (2000), Stochastic Finite Elements and Reliability - A state-of-the-art report, Report n° UCB/SEMM-2000/08. 
  76. [76] SUDRET B. (2005), Des éléments finis stochastiques spectraux aux surfaces de réponses stochastiques : une approche unifiée, 17ème Congrès Français de Mécanique, Troyes, August 2005. 
  77. [77] TALAGRAND O., COURTIER P. (1987), Variational assimilation of meteorological observations with the adjoint vorticity equation, I : theory. Q. J. R. Meteorol. Soc. 113. 
  78. [78] TARANTOLA (1987), Inverse Problem Theory and methods for data fitting and model parameter estimation, Elsevier - Amsterdam et Tarantola ( 2004), Inverse Problem Theory and methods for model parameter estimation, SIAM. MR930881
  79. [79] VON NEUMANN J., MORGENSTERN O., (1944), Theory of games and economic behavior, Princeton University Press. Zbl0063.05930MR11937
  80. [80] WALTER E., PRONZATO L. (1994), Identification de Modèles Paramétriques à partir de données expérimentales, Coll. MASC, Masson. MR1306056
  81. [81] WILKS S. S. (1941), Determination of sample sizes for setting tolerance limits, Ann. Math. Statist. 12, pp. 91-96. Zbl0024.42703MR4451

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.