Procédures bayésiennes pour la détection d'observations singulières : synthèse bibliographique

Jean-Cléophas Ondo; Taha B. M. J. Ouarda; Vincent Fortin; Bernard Bobée

Journal de la société française de statistique (2001)

  • Volume: 142, Issue: 2, page 41-64
  • ISSN: 1962-5197

How to cite

top

Ondo, Jean-Cléophas, et al. "Procédures bayésiennes pour la détection d'observations singulières : synthèse bibliographique." Journal de la société française de statistique 142.2 (2001): 41-64. <http://eudml.org/doc/199147>.

@article{Ondo2001,
author = {Ondo, Jean-Cléophas, Ouarda, Taha B. M. J., Fortin, Vincent, Bobée, Bernard},
journal = {Journal de la société française de statistique},
language = {fre},
number = {2},
pages = {41-64},
publisher = {Société française de statistique},
title = {Procédures bayésiennes pour la détection d'observations singulières : synthèse bibliographique},
url = {http://eudml.org/doc/199147},
volume = {142},
year = {2001},
}

TY - JOUR
AU - Ondo, Jean-Cléophas
AU - Ouarda, Taha B. M. J.
AU - Fortin, Vincent
AU - Bobée, Bernard
TI - Procédures bayésiennes pour la détection d'observations singulières : synthèse bibliographique
JO - Journal de la société française de statistique
PY - 2001
PB - Société française de statistique
VL - 142
IS - 2
SP - 41
EP - 64
LA - fre
UR - http://eudml.org/doc/199147
ER -

References

top
  1. BARNETT V. and LEWIS T. (1984). Outliers in Statistical Data, Wiley, Second edition, 463 pages. Zbl0638.62002MR494579
  2. BARNETT V. and LEWIS T. (1994). Outliers in Statistical Data, Wiley, Third edition, 584 pages. Zbl0801.62001MR1272911
  3. BAYARRI M. J. and MORALES J. (2000). Bayesian Measures of Surprise for Outlier Detection. Journal Statistical Planning and Inference, to appear. Zbl1027.62014
  4. BOX G. E. P. and TIAO G. C. (1968). A Bayesian Approach to some Outlier Problems. Biometrika, 55, pp. 119-129. Zbl0159.47901MR225427
  5. CHALONER K. and BRANT R. (1988). A Bayesian Approach to Outlier Detection and Residual Analysis. Biometrika, 75, pp. 651-659. Zbl0659.62037MR995109
  6. DE ALBA E. and VAN RYZIN J. (1979). An Empirical Bayes Test for Multiple Outliers, University Statistics Center, Technical Report No. 35, New Mexico State University. 
  7. DE FINETTI B. (1961). The Bayesian Approach to the Rejection of Outliers, Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Vol. 1, pp. 199-210. Zbl0129.32701MR133935
  8. DUTTER R. and GUTTMAN I. (1979). On Estimation in the Linear Model when Spurious Observations are Present - a Bayesian Approach. Communication in Statistics : Theory and Methods., 8, pp. 611 -635. Zbl0451.62051MR532864
  9. EDGEWORTH F. Y. (1887). On Discordant Observations. Philosophical Magazine, 23, Ser. 5, pp. 364-375. Zbl19.0214.02JFM19.0214.02
  10. FREEMAN P. R. (1980). On the Number of Outliers in Data From a Linear Model (with discussion), in Bayesian Statistics, Ed. J. M. Bernardo, M. H. DeGroot, D. V. Lindley and A. F.M. Smith, Valencia, Spain : Valencia University Press, pp. 349-365. MR638871
  11. GEISSER S. (1985). On the Predicting of Observables : a Selective Update. In Bayesian Statistics 2 Ed. J. M. Bernardo, M. H. DeGroot, D. V. Lindley and A.F M. Smith, pp 203-30. Amsterdam : North Holland. Zbl0671.62027MR862491
  12. GELFAND A. E.. and SMITH A. F. M. (1991). Gibbs Sampling for Marginal Posterior Expectations. Communications in Statistics : Theory Methods, 20 (5 et 6), pp. 1747-1766. MR1131627
  13. GNANADESIKAN R. (1977). Methods for Statistical Data Analysis of Multivariate Observations, New York, John Wiley and Sons, 311 pages. Zbl0403.62034MR440802
  14. GRUBBS F. E. (1969). Procedures for Detecting Outlying Observations in Samples, Technometrics, Vol. 11, pp. 1-21. 
  15. GUTTMAN I (1973). Care and Handling of Univariate or Multivariate Outliers in Detecting Spuriosity-A Bayesian Approach, Technometrics, Vol 15, pp. 723-738. Zbl0269.62038MR339391
  16. GUTTMAN I, KHATRI C. G. (1975). A Bayesian Approach to some Problems Involving the Detection of Spuriosity, Applied Statistics, North-Holland, Amsterdam, pp. 111-145 of Gupta, R. P. (Ed.). Zbl0331.62027MR423663
  17. GUTTMAN I., FREEMAN P. R. and DUTTER R. (1978). Care and Handling of Univariate Outliers in the General Linear Model to Detect Spuriosity A Bayesian Approach, Technometrics, Vol. 20, No. 2, pp. 187-193. Zbl0408.62059MR495494
  18. JUSTEL A. and PENA D. ( 1996a). Gibbs Sampling will Fail in Outlier Problem with Strong Masking. Journal of Computational and Graphical Statistics, 5, pp. 176-189. MR1405711
  19. JUSTEL A. and PENA D. ( 1996b). Bayesian Unmasking in Linear Models. Core Discussion Paper 9619, Université Catholique de Louvain. 
  20. KASS R. and RAFTERY A. (1995). Bayes Factors. Journal of the American Statistical Association, 90, pp.773-95. Zbl0846.62028
  21. KITAGAWA G. (1984). Bayesian Analysis of Outliers via Akaike's Predictive Likelihood of a Model. Communications in Statistics : Simulation and Computation., 13, pp. 107-126. Zbl0565.62016
  22. MCCULLOCH C. E. and MEETER D. (1983). Discussion of Outliers by Beckman, R. J. and Cook, R. D., Technometrics, 25, pp. 152-155. MR724598
  23. MERWE A. J. and BOTHA T. J. (1993). A Bayesian Approach to Outlier Detection in Regression Analysis Using Gibbs Sampling. South African Statistics Journal, 27, pp. 181-202. Zbl0850.62296MR1278255
  24. PEÑA D. and GUTTMAN I. (1993). Comparing Probabilistic Methods for Outlier Detection in Linear Models, Biometrika, 80, 3, pp 603-10. Zbl0800.62443MR1248025
  25. PEÑA D. and TlAO G. C. (1992). Bayesian Robustness Functions for Linear Models. Bayesian Statistics, 4 (Edited by M. Bernardo, J. O. Berger, A. P. Dawid and A. F. M. Smith), pp. 365-388. Oxford University Press. MR1380286
  26. PETTIT L. I. (1988). Bayes Methods for Outliers in Exponential Samples, Journal of the Royal. Statistical Society, Ser. B, 50, pp. 371-380. MR970973
  27. PETTIT L. I. (1992). Bayes Factors for Outlier Models Using the Device of Imaginary Observations, Journal of the American Statistical Association, Vol. 87, No. 418, pp. 541-545. 
  28. PETTIT L. I. (1994). Bayesian Approaches to the Detection of Outliers in Poisson Samples, Communication in Statistics : Theory and Methods, 23(6), pp. 1785-1795. Zbl0825.62168MR1281237
  29. PETTIT L. I. and SMITH A. F. M. (1983). Bayesian Model Comparaison in Presence of Outliers. Bulletin International Statistics Institute., 50, pp. 292-309. Zbl0576.62047MR820727
  30. PETTIT L. I. and SMITH A. F. M. (1985). Outliers and Influential Observations in Linear Models. In Bayesian Statististics 2, eds. J. M. Bernardo, M. H. DeGroot, D. V. Lindley and A. F. M. Smith, pp. 473-494. Amsterdam : North-Holland. Zbl0671.62031MR862500
  31. SPIEGELHALTER D. J. and SMITH A. F. M. (1982). Bayes Factor for Linear and Log-Linear Models With Vague Prior Information, Journal of the Royal Statistical Society, Ser. B, 44, pp. 377-387. Zbl0502.62032MR693237
  32. VARBANOV A. (1998). Bayesian Approach to Outliers Detection in Multivariate Normal Samples and Linear Models. Communication in Statistics : Theory and Methods, 27(3), pp.-547-557. Zbl0895.62034MR1619018
  33. VERDINELLI I and WASSERMAN L. (1992). Bayesian Analysis of Outlier Problem Using the Gibbs Sampler. Statistics and Computing, 1, pp. 105-117. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.