Le chaos en finance. Deux mesures de l'exposant de Lyapunov comme signal de chaos à la bourse de Paris

Hervé Alexandre

Journal de la société française de statistique (1994)

  • Volume: 135, Issue: 3, page 45-71
  • ISSN: 1962-5197

How to cite

top

Alexandre, Hervé. "Le chaos en finance. Deux mesures de l'exposant de Lyapunov comme signal de chaos à la bourse de Paris." Journal de la société française de statistique 135.3 (1994): 45-71. <http://eudml.org/doc/199201>.

@article{Alexandre1994,
author = {Alexandre, Hervé},
journal = {Journal de la société française de statistique},
language = {fre},
number = {3},
pages = {45-71},
publisher = {Société de statistique de Paris},
title = {Le chaos en finance. Deux mesures de l'exposant de Lyapunov comme signal de chaos à la bourse de Paris},
url = {http://eudml.org/doc/199201},
volume = {135},
year = {1994},
}

TY - JOUR
AU - Alexandre, Hervé
TI - Le chaos en finance. Deux mesures de l'exposant de Lyapunov comme signal de chaos à la bourse de Paris
JO - Journal de la société française de statistique
PY - 1994
PB - Société de statistique de Paris
VL - 135
IS - 3
SP - 45
EP - 71
LA - fre
UR - http://eudml.org/doc/199201
ER -

References

top
  1. ALEXANDRE H. (1994) L'efficience bruitée. Une analyse non linéaire du marché français des actions, Thèse de doctorat en sciences de gestion, Université de Bourgogne, Dijon, 268 p. 
  2. BERGE P., POMEAU Y., VIDAL C. (1988) L'ordre dans le chaos. Vers une approche déterministe de la turbulence, Hermann, 353 p. Zbl0912.58020
  3. BLACK F. (1986) " Noise", J. of Finance, pp. 529-543. 
  4. BLANK S.C. (1991) " Chaos in futures markets ? A Nonlinear Dynamical Analysis", J. Futures Markets, pp. 711-728. 
  5. BROCK W.A. (1986) " Distinguished Random and Deterministic Systems", J. Economic Theory, pp. 168-195. Zbl0616.62125MR862591
  6. BROCK W.A., DECHERT W., SCHEINKMAN J. (1987) A Test for independance Based on the Correlation Dimension, Document non publié, University of Wisconsin at Madison, University of Houston and University of Chicago. Zbl0893.62034
  7. BROCK W.A., MALLIARIS A.G. (1989) Differential equations, Stability and Chaos in Dynamics Economics, North-Holland, Advanced Textbooks in Economics, 389 p. Zbl0693.90001MR1013784
  8. BRORSEN B.W., YANG S.R. (1993) " Nonlinear Dynamics of Daily Futures Prices : Conditional Heteroskedasticity or chaos", J . of Futures Markets, pp. 175-191. 
  9. CHUA L.O., PARKER T.S. (1989) Practical Numerical Algorithms for Chaotic Systems, Springer-Verlag, 348 p. Zbl0692.58001MR1009561
  10. DECOSTER G.P., LABYS W.C., MITCHELL D.W. (1992) " Evidence of Chaos in Commodity Futures Prices", J . Futures Markets, pp. 291-305. 
  11. DECHERT W. (1988) A Characterization of Independence for a Gaussian Proces in terms of the Correlation Dimension, Worlring paper 8812, University of Wisconsin at Madison. 
  12. ECKMANN J.-P., RUELLE D., (1985) " Ergodic Theory of Chaos and Strange Attractors", R. Modem Physics, pp. 617-656. Zbl0989.37516MR800052
  13. GIRERD-POTIN I., TARAMASCO O. (1994) " Les rentabilités à la bourse de paris sont-elles chaotiques ?", R. Economique, pp. 215-238. 
  14. GRASSBERGER P., PROCACCIA I. (1983) " Measuring the Strangeness of Strange Attractors", Physica 9D, pp. 189-208. Zbl0593.58024MR732572
  15. HSIEH D.A. (1989) " Testing for Nonlinear Dependence in Daily foreign Exchange Rates", J. of Business, pp. 339-368. 
  16. HSIEH D.A. (1989) " Chaos and Nonlinear Dynamics : Application to Financial Markets", J. of Finance, pp. 1839-1877. 
  17. HSIEH D.A., LEBARON D.A. (1988) Finite Sample Properties of the BDS Statistic, Manuscript non publié, University of Chicago et University of Wisconsin at Madison. 
  18. KAASHOEK J.F., VAN DIJK H.K. (1991) Evaluation and Application of Numerical Procedures to Calculate Lyapunov Exponents, cahier 9173/A, Erasmus University, Rotterdam, p. 38. 
  19. KYLE A.S. (1985) " Continuous Auctions and Insider Trading", Econometrica, pp. 1315-1335. Zbl0571.90010
  20. LEBARON B. (1989) " Nonlinear Dynamics and Stock Returns", J. of Business, pp. 311-337. 
  21. LO A., MACKINLAY C. (1988) " Stock Market Prices do not Follow Random Walk : Evidence from a Simple Specification Test", R. of Financial Studies, pp. 41-66. 
  22. MANDELBROT B. (1975) Les objets fractals : forme, hasard et dimension, (3e édition, 1989), Nouvelle Bibliothèque Scientifique, Flammarion, 268 p. Zbl0900.00018MR462040
  23. PETERS E.E. (1991) Chaos and order in the Capital Marcket. A new View of Cycles, Prices, and Market Volatility, J. Wiley, 240 p. 
  24. POINCARÉ H. (1890) " Sur le problème des trois corps et les équations de la dynamique", Acta Mathematica, tome 13, pp. 1-270. JFM22.0907.01
  25. RUELLE D., TAKENS F. (1971) " On the Nature of Turbulence", Communications on Mathematical Physics, pp. 167-192. Zbl0223.76041MR284067
  26. TAKENS F. (1981) " Detecting Strange Attractors in Turbulence", in Dynarmcal Systems and Turbulence, D.A. Rand and L.S. Young, Springer-Verlag, Berlin. Zbl0513.58032MR654900
  27. WOLF A., SWIFT J.B., SWINNEY H.L., VASTANO J.A. (1985) " Determining Lyapunov Exponents from a time Serie", Physica 16D, pp. 285-317. Zbl0585.58037MR805706

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.