Estimateurs à noyau itérés : synthèse bibliographique

Gérard Biau

Journal de la société française de statistique (1999)

  • Volume: 140, Issue: 1, page 41-67
  • ISSN: 1962-5197

How to cite

top

Biau, Gérard. "Estimateurs à noyau itérés : synthèse bibliographique." Journal de la société française de statistique 140.1 (1999): 41-67. <http://eudml.org/doc/199315>.

@article{Biau1999,
author = {Biau, Gérard},
journal = {Journal de la société française de statistique},
language = {fre},
number = {1},
pages = {41-67},
publisher = {Société française de statistique},
title = {Estimateurs à noyau itérés : synthèse bibliographique},
url = {http://eudml.org/doc/199315},
volume = {140},
year = {1999},
}

TY - JOUR
AU - Biau, Gérard
TI - Estimateurs à noyau itérés : synthèse bibliographique
JO - Journal de la société française de statistique
PY - 1999
PB - Société française de statistique
VL - 140
IS - 1
SP - 41
EP - 67
LA - fre
UR - http://eudml.org/doc/199315
ER -

References

top
  1. [1] AKAIKE H. (1954). An approximation to the density function. Annals of the Institute of Statistical Mathematics, 6 : 127-132. Zbl0058.12302MR67412
  2. [2] BERLINET A. et DEVROYE L. (1989). Estimation d'une densité : un point sur la méthode du noyau. Statistique et Analyse des Données, 14 : 1-32. 
  3. [3] BERLINET A. et DEVROYE L. (1994). A comparison of kernel density estimates. Publications de l'Institut de Statistique de l'Université de Paris, 38 : 3-59. Zbl0804.62039MR1743393
  4. [4] BIRGÉ L. et MASSART P. (1997). From model selection to adaptative estimation. In Festschrift for LeCam, 55-87. New York : Springer-Verlag. Zbl0920.62042MR1462939
  5. [5] BOSQ D. et LECOUTRE J.P. (1987). Théorie de l'Estimation Fonctionnelle. Paris : Economica. 
  6. [6] BOWMAN A.W. (1984). An alternative method of cross-validation for the smoothing of density estimates. Biometrika, 71 : 353-360. MR767163
  7. [7] BURMAN P. (1985). A data dependent approach to density estimation. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete, 69 : 609-628. Zbl0586.62044MR791915
  8. [8] CAO R., CUEVAS A. et GONZÁLEZ-MANTEIGA W. (1994). A comparative study of several smoothing methods in density estimation. Computational Statistics and Data Analysis, 17 : 153-176. Zbl0937.62518
  9. [9] CHIU S.T. (1991). Bandwith selection for kernel density estimation. The Annals of Statistics, 19 : 1883-1905. Zbl0749.62022MR1135154
  10. [10] CHIU S.T. (1992). An automatic bandwith selector for kernel density estimation. Biometrika, 79 : 771-782. Zbl0764.62034MR1209477
  11. [11] CHOW Y.S., GEMAN S. et WU L.D. (1983) Consistent cross-validated density estimation. The Annals of Statistics, 11 : 25-38. Zbl0509.62033MR684860
  12. [12] DEHEUVELS P. (1974). Conditions nécessaires et suffisantes de convergence ponctuelle presque sûre et uniforme presque sûre des estimateurs de la densité. Comptes Rendus Mathématiques de l'Académie des Sciences de Paris, 278 : 1217-1220. Zbl0281.62041MR345296
  13. [13] DEHEUVELS P. (1977). Estimation non paramétrique de la densité par histogrammes généralisés. Revue de Statistique Appliquée, 25 : 5-42. Zbl0375.62038MR501555
  14. [14] DEHEUVELS P. et HOMINAL P. (1980) Estimation automatique de la densité. Revue de Statistique Appliquée, 28 : 25-55. Zbl0503.62032MR575109
  15. [15] DEVROYE L. (1987). A Course m Density Estimation. Boston : Birkhauser. Zbl0617.62043
  16. [16] DEVROYE L. (1989). A universal lower bound for the kernel estimate. Statistics and Probability Letters, 8 : 419-423. Zbl0681.62042MR1040802
  17. [17] DEVROYE L. (1994). On good deterministic smoothing sequences for kernel density estimates. The Annals of Statistics, 22 : 886-889. Zbl0805.62039MR1292545
  18. [18] DEVROYE L. (1997). Universal smoothing factor selection in density estimation : theory and practice. Test, 6 : 223-320. Zbl0949.62026MR1616896
  19. [19] DEVROYE L. et GYORFI L. (1985) Nonparametric Density Estimation the L1 View. New York : Wiley. Zbl0546.62015MR780746
  20. [20] DEVROYE L. et LUGOSI G. (1996). A universally acceptable smoothing factor for kernel density estimates. The Annals of Statistics, 24 : 2499-2512. Zbl0867.62024MR1425963
  21. [21] DEVROYE L. et LUGOSI G. (1997). Nonasymptotic universal smoothing factors, kernel complexity, and Yatracos classes. The Annals of Statistics, 25 : 2626-2637. Zbl0897.62035MR1604428
  22. [22] DUIN R.P.W. (1976) On the choice of smoothing parameters for Parzen estimators of probability density functions. IEEE Transactions on Computers, 25 : 1175-1179. Zbl0359.93035
  23. [23] ENGEL J., HERRMANN E. et GASSER T. (1994) An iterative bandwith selector for kernel estimation of densities and their derivatives. Journal of Nonparametric Statistics, 4 : 21-34. Zbl05143427MR1366361
  24. [24] FAN J. et MARRON J.S. (1992). Best possible constant for bandwith selection. The Annals of Statistics, 20 : 2057-2070. Zbl0765.62041MR1193325
  25. [25] GIJBELS I. et MAMMEN E. (1998). Local adaptivity of kernel estimates with plug-in local bandwith selectors. Board of the Foundation of the Scandmavian Journal of Statistics, 25 : 503-520. Zbl0921.62044MR1650027
  26. [26] HABBEMA J.D.F., HERMANS J. et VANDENBROEK K. (1974). A stepwise discriminant analysis program using density estimation. In Compstat, ed. G. Bruckmann, 101-110. Wien : Physica-Verlag. MR345251
  27. [27] HALL P. (1982). Cross-validation in density estimation. Biometrika, 69 : 383-390. Zbl0496.62038MR671976
  28. [28] HALL P. (1983). Large-sample optimality of least squares cross-validation in density estimation. The Annals of Statistics, 11 : 1156-1174. Zbl0599.62051MR720261
  29. [29] HALL P. (1985). Asymptotic theory of minimum integrated square error for multivariate density estimation. In Multwariate Analysis VI, ed. Krishnaiah, 289-309. Amsterdam . North-Holland. Zbl0592.62042MR822301
  30. [30] HALL P. (1993). On plug-in rules for local smoothing of density estimators. The Annals of Statistics, 21 : 694-710. Zbl0779.62035MR1232513
  31. [31] HALL P. et MARRON J.S. ( 1987a). Estimation of integrated squared density derivatives. Statistics and Probability Letters, 6 : 109-115. Zbl0628.62029MR907270
  32. [32] HALL P. et MARRON J.S. ( 1987b). Extent to which least squares cross-validation minimises integrated square error in nonparametric density estimation. Probability Theory and Related Fields, 74 : 567-581. Zbl0588.62052MR876256
  33. [33] HALL P. et MARRON J.S. ( 1987c). On the amount of noise inherent in bandwith selection of a kernel density estimator. The Annals of Statistics, 15 : 163-181. Zbl0667.62022MR885730
  34. [34] HALL P. et MARRON J.S. ( 1991a). Local minima in cross-validation functions. Journal of the Royal Statistical Association, B53 : 245-252. Zbl0800.62216MR1094284
  35. [35] HALL P. et MARRON J.S. ( 1991b). Lower bounds for bandwith selection in density estimation. Probability Theory and Related Fields, 90 : 149-173. Zbl0742.62041MR1128068
  36. [36] HALL P., MARRON J.S. et PARK B.U. (1992). Smoothed cross-validation. Probability Theory and Related Fields, 92 : 1-20. Zbl0742.62042MR1156447
  37. [37] HALL P., SHEATHER S.J., JONES M.C. et MARRON J.S. (1991). On optimal data-based bandwith selection in kernel density estimation Biometrika, 78 : 263-269. Zbl0733.62045MR1131158
  38. [38] HALL P. et WAND M.P. (1988). Minimizing L1 distance in nonparametric density estimation. Journal of Multivariate Analysis, 26 : 59-88. Zbl0673.62030MR955204
  39. [39] JONES M. C., MARRON J.S. et PARK B.U. (1991). A simple root n bandwith selector. The Annals of Statistics, 19 : 1919-1932. Zbl0745.62033MR1135156
  40. [40] JONES M.C. et SHEATHER S. J. (1991). Using non-stochastic terms to advantage in kernel-based estimation of integrated squared density derivatives. Statistics and Probability Letters, 11 : 511-514. Zbl0724.62040MR1116745
  41. [41] KIM W.C., PARK B.U. et MARRON J.S. (1994). Asymptotically best bandwith selectors in kernel density estimation. Statistics and Probability Letters, 19 : 119-127. Zbl0787.62043MR1256700
  42. [42] MARRON J.S. (1985). An asymptotically efficient solution to the bandwith problem of kernel density estimation. The Annals of Statistics, 13 : 1011-1023. Zbl0585.62073MR803755
  43. [43] MARRON J.S. (1987). A comparison of cross-validation techniques in density estimation. The Annals of Statistics, 15 : 152-162. Zbl0619.62032MR885729
  44. [44] MARRON J.S. (1988). Automatic smoothing parameter selection : a survey. Empirical Economics, 13 : 187-208. 
  45. [45] MARRON J.S. (1989) Comments on a data-based bandwith selector. Computational Statistics and Data Analysis, 8 : 155-170. Zbl0726.62054MR1016243
  46. [46] MARRON J.S. (1992). Bootstrap bandwith selection. In Exploring the Limits of Bootstrap, ed. R. le Page et L. Billard, 249-262. New York : Wiley. Zbl0838.62029MR1197788
  47. [47] NADARAY E.A. (1974). On the integral mean square error of some nonparametric estimates for the density function. Theory of Probability and its Applications, 19 : 133-141. Zbl0309.62025
  48. [48] PARK B.U. (1989). On the plug-in bandwith selectors in kernel density estimation. Journal of the Korean Statistical Society, 18 : 107-117. MR1045936
  49. [49] PARK B.U. et MARRON J.S. (1990). Comparison of data-driven bandwith selectors. Journal of the American Statistical Association, 85 : 66-72. 
  50. [50] PARK B.U. et MARRON J.S. (1992). On the use of pilot estimators in bandwith selection. Journal of Nonparametric Statistics, 1 : 231-240. Zbl1263.62059MR1241525
  51. [51] PARZEN E. (1962). On the estimation of a probability density function and the mode. The Annals of Mathematical Statistics, 33 : 1065-1076. Zbl0116.11302MR143282
  52. [52] ROSENBLATT M. (1956). Remarks on some nonparametric estimates of a density function. The Annals of Mathematical Statistics, 27 : 832-837. Zbl0073.14602MR79873
  53. [53] ROSENBLATT M. (1971). Curve estimates. The Annals of Mathematical Statistics, 42 : 1815-1842. Zbl0231.62100MR301851
  54. [54] RUDEMO M. (1982). Empirical choice of histograms and kernel density estimators. Scandinavian Journal of Statistics, 9 : 65-78. Zbl0501.62028MR668683
  55. [55] SCHUSTER E.F. et GREGORY G. G. (1981). On the nonconsistency of maximum likelihood nonparametric density estimators. In Computer Science and Statistics : Proceedings of the 13th Symposium on the Interface, ed. W.F. Eddy, 295-298. New York : Springer Verlag. MR650809
  56. [56] SCOTT D.W. (1985). Averaged shifted histograms : effective nonparametric density estimators in several dimensions The Annals of Statistics, 13 : 1024-1040. Zbl0589.62022MR803756
  57. [57] SCOTT D.W. (1992). Multivariate Density Estimation : Theory, Practice, and Visualisation. New York : Wiley. Zbl0850.62006MR1191168
  58. [58] SCOTT D.W. et FACTOR L.E. (1981). Monte Carlo study of three data-based nonparametric probability density estimators. Journal of the American Statistical Association, 76 : 9-15. Zbl0465.62036
  59. [59] SCOTT D.W., TAPIA R.A. et THOMPSON J.R. (1977). Kernel density estimation revisited. Nonlinear Analysis, Theory, Methods and Applications, 1 : 339-372. Zbl0363.62030MR518889
  60. [60] SCOTT D.W. et TERRELL G. R. (1987). Biased and unbiased cross-validation in density estimation. Journal of the American Statistical Association, 82 : 1131-1146. Zbl0648.62037MR922178
  61. [61] SHEATHER S.J. (1983). A data-based algorithm for choosing the window width when estimating the density at a point. Computational Statistics and Data Analysis, 1 : 229-238. Zbl0559.62033
  62. [62] SHEATHER S.J. (1986). An improved data-based algorithm for choosing the window width when estimating the density at a point. Computational Statistics and Data Analysis, 4 : 61-65. 
  63. [63] SHEATHER S.J. et JONES M.C. (1991). A reliable data-based bandwith selection method for kernel density estimation. Journal of the Royal Statistical Society, B53 : 683-690. Zbl0800.62219MR1125725
  64. [64] SILVERMAN B.W. (1986). Density Estimation for Statistics and Data Analysis. London : Chapman and Hall. Zbl0617.62042MR848134
  65. [65] SIMONOFF J.S. (1996). Smoothing Methods in Statistics. New York : Springer-Verlag. Zbl0859.62035MR1391963
  66. [66] STONE C.J. (1984) An asymptotically optimal window selection rule for kernel density estimates. The Annals of Statistics, 12 : 1285-1297. Zbl0599.62052MR760688
  67. [67] TERRELL G.R. et SCOTT D.W. (1985). Oversmoothed nonparametric density estimates. Journal of the American Statistical Association, 80 : 209-214. MR786608
  68. [68] TURLACH B.A. (1993). Bandwith selection in kernel density estimation : a review. Rapport technique, Université Catholique de Louvain. 
  69. [69] WEGKAMP M.H. (1999). Quasi-universal bandwith selection for kernel density estimators A paraître dans The Canadian Journal of Statistics. Zbl1066.62521MR1704442
  70. [70] WOODROOFE M. (1970). On choosing a delta sequence. The Annals of Mathematical Statistics, 41 : 1665-1671. Zbl0229.62022MR270515

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.