Le biplot - outil d'exploration de données multidimensionnelles

K. Ruben Gabriel

Journal de la société française de statistique (2002)

  • Volume: 143, Issue: 3-4, page 5-55
  • ISSN: 1962-5197

How to cite

top

Gabriel, K. Ruben. "Le biplot - outil d'exploration de données multidimensionnelles." Journal de la société française de statistique 143.3-4 (2002): 5-55. <http://eudml.org/doc/199643>.

@article{Gabriel2002,
author = {Gabriel, K. Ruben},
journal = {Journal de la société française de statistique},
language = {fre},
number = {3-4},
pages = {5-55},
publisher = {Société française de statistique},
title = {Le biplot - outil d'exploration de données multidimensionnelles},
url = {http://eudml.org/doc/199643},
volume = {143},
year = {2002},
}

TY - JOUR
AU - Gabriel, K. Ruben
TI - Le biplot - outil d'exploration de données multidimensionnelles
JO - Journal de la société française de statistique
PY - 2002
PB - Société française de statistique
VL - 143
IS - 3-4
SP - 5
EP - 55
LA - fre
UR - http://eudml.org/doc/199643
ER -

References

top
  1. ALLEN D. M. (1974). " The relationship between variable selection and data augmentation as a method of prediction." Technometrics, 16, 125-127. Zbl0286.62044MR343481
  2. BACCINI A., CAUSSINUS H. et FALGUEROLLES A. de (1993). " Analysing dependence in large contingency tables : Dimensionality and patterns in scatter-plots." Multivariate Analysis : Future Directions 2 (eds. C M . Cuadras et C.R. Rao). Amsterdam; Elsevier, pp. 245-263. Zbl0925.62212MR1268424
  3. BENZÉCRI J.-P. (1973). L'Analyse des Données, Tome 2 : L'Analyse des Correspondances. Paris : Dunod. Zbl0297.62039
  4. BENZÉCRI J.-P. (1978). « Sur l'analyse des tableaux binaires associés à une correspondance multiple.» Cahiers de l'Analyse des Données, 2, 55-71. 
  5. BRADU D. et GABRIEL K. R. (1978). " The biplot as a diagnostic tool for models in two-way tables." Technometrics, 20, 47-68. Zbl0381.62004
  6. BRUTSCHY B. et LEBART L. (1991). " Contiguity analysis and projection pursuit." Applied Stochastic Models and Data Analysis (eds. R. Gutierrez et M.J.M.Valderrama). World Scientific, pp. 117-128. MR1201328
  7. CARLIER A. et KROONENBERG P.M. (1996). " Décompositions and biplots in three-way correspondence analysis." Psychometrika, 61, 355-373. Zbl0876.62048
  8. CAUSSINUS H. (1986). " Models and uses of principal component analysis.," en Multidimensional Data Analysis, (eds. J. de Leeuw, W. Heiser, J. Meulman et F. Critchley). Leiden, DSWO Press, pp. 149-170. 
  9. CAUSSINUS H. (1992). « Projections révélatrices», en Modèles pour l'Analyse des Données Multidimensionnelles, (eds. J. J. Droesbeke, B. Fichet et P. Tassi). Paris, Economica, pp. 241-265. 
  10. CAUSSINUS H. (1993). « Modèles probabilistes et analyse des données multidimensionnelles». Journal de la Société de Statistique de Paris, 134, 15-32. 
  11. CAUSSINUS H. et FALGUEROLLES A. de (1987). « Tableaux carrés : modélisation et méthodes factorielles» Revue de Statistique Appliquée, XXXV, 35-52. 
  12. CAUSSINUS H. et FERRÉ L. (1992). " Comparing the parameters of a model for several units by means of principal components analysis." Computational Statistics and Data Analysis, 13, 269-280. Zbl0800.62311
  13. CAUSSINUS H., HAKAM S., et RUIZ-GAZEN A. (2002). « Projections révélatrices contrôlées - recherche d'individus atypiques.» Revue de Statistique Appliquée, L(4), 81-94. 
  14. CAUSSINUS H., HAKAM S., et RUIZ-GAZEN A. (2003). « Projections révélatrices contrôlées - groupements et structures complexes.» Revue de Statistique Appliquée, LI(1), 37-58. 
  15. CAUSSINUS, H. et RUIZ A. (1990). " Interesting projections of multidimensional data by means of generalized principal component analysis." COMPSTAT 90. Heidelberg : Physica Verlag, pp. 121-36. 
  16. CAUSSINUS H. et RUIZ-GAZEN A. (1993). " Projection pursuit and generalized principal component analysis," in New Directions in Statistical Data Analysis and Robustness. Basel : Birkhausen Verlag, pp.35-46. Zbl0819.62052MR1280272
  17. CAUSSINUS H. et RUIZ-GAZEN A. (1995). " Metrics for finding typical structures by means of principal component analysis," in Data Science and Its Applications. Harcourt Brace, pp. 177-92. 
  18. CHUANG J.L.C., GABRIEL K. R., et THERNEAU T. M. (1986). Use of 3-D biplots for diagnosing models to fit high-dimensional data. University of Rochester, Department of Statistics Technical report 86/06. 
  19. CLEVELAND W. S. (1993). Visualizing Data. Murray Hill, NJ, AT&T Bell. 
  20. CORSTEN L.C.A. et GABRIEL K. R. (1976). " Graphical exploration in comparing variance matrices." Biometrics, 32, 851-863. Zbl0343.62049
  21. DAIGLE G. et RIVEST L. P. (1992). " A robust biplot." Canadian Journal of Statistics, 20, 241-255. Zbl0756.62001MR1190569
  22. EASTMENT H.T. et KRZANOWSKI W.J. (1982). " Cross-validatory choice of the number of components from a principal component analysis". Technometrics, 24, 73-77. MR653115
  23. ESCOUFIER Y. (1973). « Le traitement des variables vectorielles». Biométries, 29, 751-760. MR334416
  24. FALGUEROLLES A. de (2000). « Trop de camemberts tuent le camembert». Journal de la Société Française de Statistique, 141, 45-49. 
  25. FALGUEROLLES A. de (1998). " Log-bilinear biplots in action," in Visualization Of Categorical Data (eds. J. Blasius and M. Greenacre). San Diego : Academic Press, 527-539. 
  26. FALGUEROLLES A. de et FRANCIS B. (1992). " Algorithmic approaches for fitting bilinear models," in COMPSTAT 92 : Computational Statistics, Vol. 1, (eds. Y. Dodge and J. Whittaker). Heidelberg, Physica-Verlag, pp. 77-82. MR1214804
  27. FARAJ A. (1993). « Analyse de contiguïté : une analyse discriminante généralisée à plusieurs variables qualitatives». Revue de Statistique Appliquée, 4 1 , 73-84. 
  28. FARAJ A. (1994). " Interpretation tools for generalized discriminant analysis," in New Approaches in Classification and Data Analysis (eds. E, Diday, Y. Lechevallier, M. Schader, P. Bertrand et B. Burtschy). Berlin, Springer-Verlag, 285-291. MR1415847
  29. FARAJ A., et CAILLY F. (2001). " Spatial contiguity analysis : a method for describing spatial structures of seismic data." Journal of Petroleum Science and Engineering, 31 , 93-111. 
  30. FERRÉ L. (1995). " Improvement of some multidimensional estimates by reduction of dimensionality." Journal of Multivariate Analysis, 54, 147-162. Zbl0845.62042MR1345532
  31. FINE J. (1992). « Modèles fonctionels et structurels», en Modèles pour l'Analyse des Données Multidimensionelles, (eds. J. J. Droesbeke, B. Fichet et P. Tassi). Paris, Economica, pp. 21-60. 
  32. FINLAY K.W. et WILKINSON G.N. (1963). " The analysis of adaptation in a plant breeding programme," Austrahan Journal of Agricultural Research, 14, 742-754. 
  33. FISHER R. A. (1935). The Design of Experiments. Edinburgh, Oliver and Boyd. JFM61.0566.03
  34. FRIENDLY M., et DENIS D. (2000). " The roots and branches of modern statistical graphies." Journal de la Société Française de Statistique, 141, 51-60. 
  35. GABRIEL K. R. (1971). " The biplot - graphical display of matrices with application to principal component analysis." Biometrika, 58, 453-467. Zbl0228.62034MR312645
  36. GABRIEL K. R. (1972). " Analysis of meteorological data by means of canonical decomposition and biplots." Journal of Applied Meteorology, 11, 1071-77. 
  37. GABRIEL K. R. ( 1978a). " Least squares approximation of matrices by additive and multiplicative models." Journal of the Royal Statistical Society, B, 40, 186-196. Zbl0393.62019MR517440
  38. GABRIEL K. R. ( 1978b). " The complex correlational biplot," en Theory Construction and Data Analysis in the Behavioral Sciences (ed. S. Shye). San Francisco, Jossey-Bass, pp. 350-370. 
  39. GABRIEL K. R. (1981). " Biplot display of multivariate matrices for inspection of data and diagnosis," en Interpreting Multivariate Data (ed. V. Barnett). Chichester, Wiley, pp. 147-173. MR656974
  40. GABRIEL K. R. (1982). " Biplot," en Encyclopedia of Statistical Sciences, Vol. I (eds. S. Kotz and N.L. Johnson). New York : Wiley, pp. 262-265. MR1044999
  41. GABRIEL K. R. (1987). " Some thoughts on comparing multivariate data with the map locations at which they were observed," en Proceedings of the 19th Symposium on the Interface : Computer Science and Statistics (eds. R. M. Heiberger et M. T. Martin). Alexandria, Virginia : American Statistical Association, pp. 139-146. 
  42. GABRIEL K. R. (1988). " Relating multivariate data to geographical location," en Data Analysis, Expert Knowledge and Decisions (eds. W. Gaul et M. Schader). Berlin : Springer, pp. 341-354. 
  43. GABRIEL K. R. ( 1995a). " Biplot display of multivariate categorical data, with comments on multiple correspondence analysis," en Recent Advances in Descriptive Multivariate Analysis (ed. W.J. Krzanowski). Oxford : Clarendon. Chapter 9. MR1380311
  44. GABRIEL K.R. ( 1995b). " MANOVA biplots for two-way contingency tables," in Recent Advances m Descriptive Multivariate Analysis (ed. W.J. Krzanowski). Oxford : Clarendon. Chapter 10. 
  45. GABRIEL K.R. (1997). " The effect of metrics on biplot display," en Statistical and Mathematical Modelling in the Fields of Food Science, Biotechnology and Environment, (ed. Ute Rmisch). Berlin : Frauenhofer Institut. 
  46. GABRIEL K.R. (1998). " Generalized bilinear regression." Biometrika, 85, 689-700. Zbl0918.62060MR1665834
  47. GABRIEL K.R. (2002). " Goodness of fit of biplots and correspondence analysis." Biometrika, 89, 423-436. Zbl1019.62059MR1913969
  48. GABRIEL K.R. ( 2003a). " Lower rank fits and biplots from incomplete data." (In préparation). 
  49. GABRIEL K.R. ( 2003b). " Cross-validation and choice of dimension for lower rank fits and biplots." (In préparation). 
  50. GABRIEL K.R., GALINDO M.P. et VICENTE-VILLARDÓN, J.L. (1998). " Use of Biplots to diagnose independence models in contingency tables," in Visualization Of Categorical Data (eds. J. Blasius and M. Greenacre). San Diego : Academic Press, 391-404. 
  51. GABRIEL K.R. et ODOROFF C. L. (1984). " Résistant lower rank approximation of matrices," in Data Analysis and Informatics III, (eds. E. Diday, M. Jambu, L. Lebart, J. Pages, and R. Tomassone). Amsterdam : North-Holland, 23-30. MR787632
  52. GABRIEL K.R. et ODOROFF C. L. (1990). " Biplots in biomedical research." Statistics in Medicine, 9, 469-485. 
  53. GABRIEL K.R. et ZAMIR S. (1979). " Lower rank approximation of matrices by least squares with any choice of weights." Technometrics, 2 1 , 489-498. Zbl0471.62004
  54. GALINDO VILLARDÓN P. (1986). " Una alternativa de representacion simultanea : HJ-biplot." Questio, 10, 13-23. 
  55. GAUCH H. G. (1992). Statistical Analysis of Regional Yield Trials : AMMI Analysis of Factorial Designs. Amsterdam : Elsevier. 
  56. GAUCH H. G. et ZOBEL R. W. (1997). " Identifying mega-environment and targeting genotypes." Crop Science, 37, 311-326. 
  57. GEARY R. C. (1954). " The contiguity ratio and statistical mapping." The Incorporated Statistician, 5, 115-154. 
  58. GHEVA D. (1986). " The biplot graphic technique for the representation of multivariate time series." European Journal of Operational Research, 27, 95-103. Zbl0594.62104
  59. GOODALL C. (1991). " Procrustes methods in the analysis of shape." Journal of the Royal Statistical Society, Series B, 53, 285-339. Zbl0800.62346MR1108330
  60. GOODMAN L. A. (1991). " Measures, models, and graphical displays in the analysis of cross-classified data." Journal of the American Statistical Association, 86, 1085-1138. Zbl0850.62093MR1146354
  61. GOWER J.C. (1971). " Statistical methods of comparing different multivariate analyses of the same data," in Mathematics in the Archeological and Historical Sciences (eds. F.R. Hodson, D.G. Kendall, et P. Tautu ). Edinburgh : University Press, 138-149. Zbl0302.62027
  62. GOWER J. C. et HAND D. J. (1996). Biplots. London : Chapman and Hall. Zbl0867.62053MR1382860
  63. GREENACRE M. J. (1984). Theory and Application of Correspondence Analysis. London : Academic Press. Zbl0555.62005MR767260
  64. GREENACRE M. J. (1988). " Correspondence analysis of multivariate categorical data by weighted least squares." Biometrika, 75, 457-467. Zbl0651.62054MR967584
  65. GREENACRE M. J. (1993). " Biplots in Correspondence Analysis." Journal of Applied Statistics, 20, 251-269. 
  66. HABER M. (1975). The Singular Value Decomposition of Random Matrices. Thèse de Ph.D., Jerusalem, Hebrew University. 
  67. HENRION R. and HENRION G. (1995). Multivariate Datenanalyse. Berlin, Springer. Zbl0838.62048
  68. HEO M. (1996). On the fit of sample graphical displays to pattems in populations. University of Rochester, Ph.D thesis. MR2694159
  69. HEO M. et GABRIEL K. R. (2001). " The fit of graphical displays to patterns of expectations." Computational Statistics and Data Analysis, 36, 47-67. Zbl1080.62501MR1847234
  70. HOUSEHOLDER A.S. et YOUNG G. (1938). " Matrix approximation and latent roots." American Mathematical Monthly, 45, 165-171. Zbl0019.14701MR1524223JFM64.0046.03
  71. IMMER F. R., HAYES H. K. et LE ROY POWERS (1934). " Statistical determination of barley varietal adaptation." Journal of the American Society of Agronomy, 26, 403-419. 
  72. JAMBU M. (1977). « Sur l'utilisation conjointe d'une classification hiérarchique et de l'analyse factorielle en composantes principales». Revue de Statistique Appliquée, 25, 4, 5-35. 
  73. JOLLIFFE I. T. (2002). Principal Component Analysis, 2e ed. Springer, New York. Zbl1011.62064MR2036084
  74. KEMPTON R. A. (1984). " The use of biplots in interpreting variety by environment interactions." Journal of Agricultural Science, 103, 123-135. 
  75. LEBART L. (1969). Analyse Statistique de la Contiguïté, Publ. de l'ISUP, XVIII, 81-112. Zbl0223.62129
  76. LEBART L. (2001). « Classification, analyse de contiguïté et plus proches voisins», Journées de Statistique XXVII, Nantes, Paris : ASU, 503-506. 
  77. LINGOES J. C. et SCHÖNEMANN P. H. (1974). " Alternative measures for fit for the Schnemann-Carroll matrix fitting algorithm." Psychometrika, 39, 423-427. Zbl0295.92022MR403195
  78. LUBISCHEW A. A. (1962). " On the use of discriminant functions in taxonomy." Biometrics, 18, 455-477. Zbl0112.11602
  79. MANDEL J. (1961). " Non-additivity in two-way analysis of variance." Journal of the American Statistical Association, 56, 878-888. Zbl0109.12405MR131934
  80. RAMSAY J. O., ten BERGE, J., et STYAN G. P. H. (1984). " Matrix correlation." Psychometrika, 49, 403-423. Zbl0581.62048MR760205
  81. RUIZ-GAZEN A. (1996). " A very simple robust estimator for a dispersion matrix." Computational Statistics and Data Analysis, 2 1 , 463-473. Zbl0900.62274
  82. SAPORTA G. (1990). Probabilités, Analyse des Données et Statistique. Paris, Dunod. Zbl0703.62003
  83. SPARKS R., ADOLPHSON A. et PHATAK A. (1997). " Multivariate process monitoring using the dynamic biplot." International Statistical Review, 65, 325-349. Zbl0910.62102
  84. ter BRAAK C.J.F. (1990). " Interpreting canonical correlation analysis through biplots of structure and weights." Psychometrika, 55, 519-532. 
  85. ter BRAAK C.J.F. (1994). " Biplots in reduced rank regression." Biometrical Journal, 8, 983-1003. Zbl0850.62495
  86. TORGERSON W. S. (1958). Theory and Methods of Scaling. New York : Wiley. 
  87. TSIANCO M.C., et GABRIEL K.R. (1984), " Modeling temperature data : An illustration of the use of biplots and bimodels in non-linear modeling." Journal of Applied Meteorology, 23, 787-799. 
  88. TUKEY J.W. (1949). " One degree of freedom for non-additivity." Biometrics, 5, 232-242. 
  89. UNDERHILL L. G. (1990). " The coefficient of variation biplot." Journal of Classification, 7, 41-56. 
  90. VALOIS J.-P. (2000). « Approche graphique en analyse de données». Journal de la Société Française de Statistique, 141, 5-40. 
  91. van EEUWIJK F. A. (1995). " Multiplicative interaction in generalised linear models." Biometrics 5 1 , 1017-32. Zbl0875.62330
  92. VENABLES W. N. et RIPLEY B.D. (1999). Modern Applied Statistics, 3e édition. New York : Springer. Zbl0927.62002
  93. VERBOON P. (1994). A Robust Approach to Nonlinear Multivariate Analysis. Leiden, DSWO Press. Zbl0868.62052MR1281389
  94. WOLD H. (1966). " Nonlinear estimation by iterative least squares procedures." Research Papers in Statistics (F. N. David, ed.). New York, Wiley, pp. 411-444. Zbl0161.15901MR210250
  95. WOLD S. (1976). " Cross-validatory estimation of the number of components in factor and principal component analysis." Technometrics, 20, 397-405. Zbl0403.62032
  96. YAN W., HUNT L. A., SHENG Q. et SZLAVNICS Z. (2000). " Cultivar evaluation and mega-environment investigation based on the GGE biplot." Crop Science, 40, 597-605. 

Citations in EuDML Documents

top
  1. Sergio Arciniegas-Alarcón, Marisol García-Peña, Wojtek Janusz Krzanowski, Carlos Tadeu dos Santos Dias, An alternative methodology for imputing missing data in trials with genotype-by-environment interaction: some new aspects
  2. H. Caussinus, S. Hakam, A. Ruiz-Gazen, Projections révélatrices contrôlées: groupements et structures diverses
  3. Antoine De Falguerolles, Peter G.M. Van Der Heijden, Reduced rank quasi-symmetry and quasi-skew symmetry : a generalized bi-linear model approach

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.