Les cours d'actifs financiers sont-ils autosimilaires ?
Journal de la société française de statistique (2000)
- Volume: 141, Issue: 1-2, page 137-148
- ISSN: 1962-5197
Access Full Article
topHow to cite
topBardet, Jean-Marc. "Les cours d'actifs financiers sont-ils autosimilaires ?." Journal de la société française de statistique 141.1-2 (2000): 137-148. <http://eudml.org/doc/199851>.
@article{Bardet2000,
author = {Bardet, Jean-Marc},
journal = {Journal de la société française de statistique},
language = {fre},
number = {1-2},
pages = {137-148},
publisher = {Société française de statistique},
title = {Les cours d'actifs financiers sont-ils autosimilaires ?},
url = {http://eudml.org/doc/199851},
volume = {141},
year = {2000},
}
TY - JOUR
AU - Bardet, Jean-Marc
TI - Les cours d'actifs financiers sont-ils autosimilaires ?
JO - Journal de la société française de statistique
PY - 2000
PB - Société française de statistique
VL - 141
IS - 1-2
SP - 137
EP - 148
LA - fre
UR - http://eudml.org/doc/199851
ER -
References
top- [1] BARDET, J.M. [ 2000]. Testing for the presence of self-similarity of Gaussian time series having stationary increments. J. Time Ser. Anal. 21, 497-516. Zbl0972.62070MR1794484
- [2] BENASSI, A. et DEGUY, S. [ 1999] Multiscale fractional Brownian motion : definition and identification. Prépublication LLAIC.
- [3] BERAN, J. [ 1994]. Statistics for long memory processes. Monographs on Statist. and Appl. Probab. 61. Chapman & Hall, 315 p. Zbl0869.60045MR1304490
- [4] DOBRUSHIN, R.L. et MAJOR, P. [ 1979] Non-central limit theorems for nonlinear functionals of Gaussian fields. Z. Wahrsch. Verw. Gebiete 50 27-52. Zbl0397.60034MR550122
- [5] HURST, H.E. [ 1953] Long term storage capacity of reservoirs. Transactions of the American Society of Civil Ingeneers 116, 770-779.
- [6] GUYON, X. et LEON, J. [ 1989]. Convergence en loi des H- variations d'un processus gaussien stationnaire. Ann. Inst. Poincaré 25, 265-282. Zbl0691.60017MR1023952
- [7] ISTAS, J. et LANG, G. [ 1997]. Quadratic variations and estimation of the local Hölder index of a Gaussian process. Ann. Inst. Poincaré 33, 407-436. Zbl0882.60032MR1465796
- [8] JULIA, G. [ 1918]. Sur l'itération des fonctions rationnelles. J. Math. Pure Appl. 8, 47-245. Zbl46.0520.06JFM46.0520.06
- [9] KOLMOGOROV, A.N. [ 1940]. Wienersche Spiralen und einige andere interessante Kurven in Hilbertschen Raum. Doklady 26, 115-118. Zbl0022.36001MR3441JFM66.0552.03
- [10] MAJOR, P. [ 1982]. On renormalization Gaussian fields. Z. Wahrsch. Verw. Gebiete 59, 515-533. Zbl0484.60016MR656514
- [11] MANDELBROT, B. B. [ 1997] Fractals and scaling in finance. Discontinuity, concentration, risk. Selecta Volume E. Springer-Verlag, New York. Zbl1005.91001MR1475217
- [12] ROGERS, L. [ 1997]. Arbitrage with fractional Brownian motion. Math. Finance 7, 1-14. Zbl0884.90045MR1434408
- [13] SAMORODNITSKY, G. et TAQQU, M.S. [ 1994]. Stable non- Gaussian random processes. Stochastic modeling. Chapman &, Hall, 636 p. Zbl0925.60027MR1280932
- [14] TAQQU, M.S. [ 1979]. Convergence of integrated processes of arbitrary Hermite rank. Z. Wahrsch. Verw. Gebiete 50, 53-83. Zbl0397.60028MR550123
- [15] TAQQU, M.S., WILLINGER W., SHERMAN R. [ 1997]. Proof of a fundamental result in self-similar traffic modeling. Computer Comm. Rev., 27, 5-23.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.