On the power values of Stirling numbers

B. Brindza; Á. Pintér

Acta Arithmetica (1991)

  • Volume: 60, Issue: 2, page 169-175
  • ISSN: 0065-1036

How to cite

top

B. Brindza, and Á. Pintér. "On the power values of Stirling numbers." Acta Arithmetica 60.2 (1991): 169-175. <http://eudml.org/doc/206431>.

@article{B1991,
author = {B. Brindza, Á. Pintér},
journal = {Acta Arithmetica},
keywords = {exponential diophantine equation; effective finiteness results; power values of Stirling numbers of first and second kind; linear forms in logarithms},
language = {eng},
number = {2},
pages = {169-175},
title = {On the power values of Stirling numbers},
url = {http://eudml.org/doc/206431},
volume = {60},
year = {1991},
}

TY - JOUR
AU - B. Brindza
AU - Á. Pintér
TI - On the power values of Stirling numbers
JO - Acta Arithmetica
PY - 1991
VL - 60
IS - 2
SP - 169
EP - 175
LA - eng
KW - exponential diophantine equation; effective finiteness results; power values of Stirling numbers of first and second kind; linear forms in logarithms
UR - http://eudml.org/doc/206431
ER -

References

top
  1. [1] B. Brindza, On -integral solutions of the equation y m = f ( x ) , Acta Math. Hungar. 44 (1984), 133-139. Zbl0552.10009
  2. [2] F. T. Howard, Congruences for the Stirling numbers and associated Stirling numbers, Acta Arith. 55 (1990), 29-41. Zbl0648.10008
  3. [3] M. Mignotte and M. Waldschmidt, Linear forms in two logarithms and Schneider's method, II, Acta Arith. 53 (1989), 251-287. Zbl0642.10034
  4. [4] Á. Pintér, On some arithmetical properties of Stirling numbers, Publ. Math. Debrecen, to appear. Zbl0752.11008
  5. [5] G. Pólya und G. Szegö, Aufgaben und Lehrsätze aus der Analysis, Band I, Springer, Berlin 1925. Zbl51.0173.01
  6. [6] J. Riordan, An Introduction to Combinatorial Analysis, Wiley, New York 1958. Zbl0078.00805
  7. [7] A. Schinzel and R. Tijdeman, On the equation y m = P ( x ) , Acta Arith. 31 (1976), 199-204. Zbl0303.10016
  8. [8] T. N. Shorey and C. L. Stewart, On the diophantine equation a x ² t + b x t y + c y ² = d and pure powers in recurrence sequences, Math. Scand. 52 (1983), 24-36. Zbl0491.10016
  9. [9] T. N. Shorey and C. L. Stewart, Pure powers in recurrence sequences and some related diophantine equations, J. Number Theory 27 (1987), 324-352 Zbl0624.10009

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.