Pairs of additive quadratic forms modulo one

R. C. Baker; S. Schäffer

Acta Arithmetica (1992)

  • Volume: 62, Issue: 1, page 45-59
  • ISSN: 0065-1036

How to cite

top

R. C. Baker, and S. Schäffer. "Pairs of additive quadratic forms modulo one." Acta Arithmetica 62.1 (1992): 45-59. <http://eudml.org/doc/206479>.

@article{R1992,
author = {R. C. Baker, S. Schäffer},
journal = {Acta Arithmetica},
keywords = {real quadratic forms; fractional parts; lattices; additive quadratic forms; estimates for quadratic Weyl sums},
language = {eng},
number = {1},
pages = {45-59},
title = {Pairs of additive quadratic forms modulo one},
url = {http://eudml.org/doc/206479},
volume = {62},
year = {1992},
}

TY - JOUR
AU - R. C. Baker
AU - S. Schäffer
TI - Pairs of additive quadratic forms modulo one
JO - Acta Arithmetica
PY - 1992
VL - 62
IS - 1
SP - 45
EP - 59
LA - eng
KW - real quadratic forms; fractional parts; lattices; additive quadratic forms; estimates for quadratic Weyl sums
UR - http://eudml.org/doc/206479
ER -

References

top
  1. [1] R. C. Baker, Small solutions of congruences, Mathematika 20 (1983), 164-188. Zbl0532.10011
  2. [2] R. C. Baker, Diophantine Inequalities, Oxford University Press, Oxford 1986. Zbl0592.10029
  3. [3] R. C. Baker and J. Brüdern, Pairs of quadratic forms modulo one, Glasgow Math. J., to appear. Zbl0774.11031
  4. [4] R. C. Baker and J. Gajraj, On the fractional parts of certain additive forms, Math. Proc. Cambridge Philos. Soc. 79 (1976), 463-467. Zbl0323.10032
  5. [5] R. C. Baker and G. Harman, Small fractional parts of quadratic and additive forms, Math. Proc. Cambridge Philos. Soc. 90 (1981), 5-12. Zbl0466.10029
  6. [6] R. C. Baker and G. Harman, Small fractional parts of quadratic forms, Proc. Edinburgh Math. Soc. 25 (1982), 269-277. Zbl0499.10037
  7. [7] R. J. Cook, The fractional parts of an additive form, Proc. Cambridge Philos. Soc. 72 (1972), 209-212. Zbl0237.10023
  8. [8] I. Danicic, Contributions to number theory, Ph. D. thesis, London 1957. 
  9. [9] I. Danicic, An extension of a theorem of Heilbronn, Mathematika 5 (1958), 30-37. Zbl0085.03304
  10. [10] I. Danicic, On the fractional parts of θx² and ϕx², J. London Math. Soc. 34 (1959), 353-357. Zbl0088.25704
  11. [11] I. Danicic, The distribution (mod 1) of pairs of quadratic forms with integer variables, J. London Math. Soc. 42 (1967), 618-623. Zbl0165.36402
  12. [12] G. Hardy, J. E. Littlewood and G. Pólya, Inequalities, Cambridge University Press, Cambridge 1967. 
  13. [13] G. Harman, Diophantine approximation and prime numbers, Ph.D. thesis, London 1982. Zbl0443.10015
  14. [14] D. R. Heath-Brown, Small solutions of quadratic congruences II, Mathematika 38 (1991), 264-284. Zbl0725.11018
  15. [15] H. Heilbronn, On the distribution of the sequence θn² (mod 1), Quart. J. Math. Oxford Ser. (2) 19 (1948), 249-256. Zbl0031.20502
  16. [16] M. C. Liu, On the fractional parts of θ n k and ϕ n k , Quart. J. Math. Oxford Ser. (2) 21 (1970), 481-486. 
  17. [17] M. C. Liu, Simultaneous approximation of two additive forms, Trans. Amer. Math. Soc. 206 (1975), 361-373. Zbl0305.10024
  18. [18] A. Schinzel, H. P. Schlickewei and W. M. Schmidt, Small solutions of quadratic congruences and small fractional parts of quadratic forms, Acta Arith. 37 (1980), 241-248. Zbl0446.10026
  19. [19] W. M. Schmidt, Small fractional parts of polynomials, CBMS Regional Conf. Ser. in Math. 32, Amer.Math. Soc., Providence 1977. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.