# On certain solutions of the diophantine equation x-y = p(z)

Acta Arithmetica (1992)

- Volume: 62, Issue: 1, page 61-71
- ISSN: 0065-1036

## Access Full Article

top## How to cite

topR. Nair. "On certain solutions of the diophantine equation x-y = p(z)." Acta Arithmetica 62.1 (1992): 61-71. <http://eudml.org/doc/206480>.

@article{R1992,

author = {R. Nair},

journal = {Acta Arithmetica},

keywords = {sets of recurrence; intersective subsets; difference sets; polynomial with integer coefficients; positive Banach density; ergodic theory; uniform distribution of polynomial values},

language = {eng},

number = {1},

pages = {61-71},

title = {On certain solutions of the diophantine equation x-y = p(z)},

url = {http://eudml.org/doc/206480},

volume = {62},

year = {1992},

}

TY - JOUR

AU - R. Nair

TI - On certain solutions of the diophantine equation x-y = p(z)

JO - Acta Arithmetica

PY - 1992

VL - 62

IS - 1

SP - 61

EP - 71

LA - eng

KW - sets of recurrence; intersective subsets; difference sets; polynomial with integer coefficients; positive Banach density; ergodic theory; uniform distribution of polynomial values

UR - http://eudml.org/doc/206480

ER -

## References

top- [1] V. Bergelson, Sets of recurrence of ${\mathbb{Z}}^{m}$-actionsand properties of sets of differences in ${\mathbb{Z}}^{m}$, J. London Math. Soc. (2) 31 (1985), 295-304. Zbl0579.10029
- [2] A. Bertrand-Mathis, Ensembles intersectifs et recurrence de Poincaré, Israel J. Math. 55 (1986), 184-198. Zbl0611.10032
- [3] H. Furstenberg, Ergodic behaviour of diagonal measures and a theorem of Szemerédi onarithmetic progressions, J. Analyse Math. 31 (1977), 204-256. Zbl0347.28016
- [4] H. Furstenberg, Recurrence in Ergodic Theory andCombinatorial Number Theory, Princeton University Press, 1981.
- [5] L. K. Hua, Additive Theory of Prime Numbers, Amer. Math. Soc.Transl. 13, 1965. Zbl0192.39304
- [6] T. Kamae and M. Mendès France, Van der Corput's difference theorem, Israel J. Math. 31 (1978),335-342. Zbl0396.10040
- [7] U. Krengel, Ergodic Theorems, de Gruyter Stud. Math. 6, 1985.
- [8] R. Nair, On strong uniform distribution, Acta Arith. 56 (1990), 183-193. Zbl0716.11036
- [9] G. Rhin, Sur la répartition modulo 1 des suites f(p), Acta Arith. 23 (1973), 217-248.
- [10] A. Sárközy, On difference sets of sequences of integers, II, Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 21(1978), 45-53. Zbl0413.10051
- [11] A. Sárközy, On difference sets of sequences ofintegers. III, Acta Math. Acad. Sci. Hungar. 31 (3-4) (1978),355-386.
- [12] H. Weyl, Über die Gleichverteilung von Zahlenmod. Eins, Math. Ann. 77 (1916), 313-352. Zbl46.0278.06

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.