On certain solutions of the diophantine equation x-y = p(z)

R. Nair

Acta Arithmetica (1992)

  • Volume: 62, Issue: 1, page 61-71
  • ISSN: 0065-1036

How to cite

top

R. Nair. "On certain solutions of the diophantine equation x-y = p(z)." Acta Arithmetica 62.1 (1992): 61-71. <http://eudml.org/doc/206480>.

@article{R1992,
author = {R. Nair},
journal = {Acta Arithmetica},
keywords = {sets of recurrence; intersective subsets; difference sets; polynomial with integer coefficients; positive Banach density; ergodic theory; uniform distribution of polynomial values},
language = {eng},
number = {1},
pages = {61-71},
title = {On certain solutions of the diophantine equation x-y = p(z)},
url = {http://eudml.org/doc/206480},
volume = {62},
year = {1992},
}

TY - JOUR
AU - R. Nair
TI - On certain solutions of the diophantine equation x-y = p(z)
JO - Acta Arithmetica
PY - 1992
VL - 62
IS - 1
SP - 61
EP - 71
LA - eng
KW - sets of recurrence; intersective subsets; difference sets; polynomial with integer coefficients; positive Banach density; ergodic theory; uniform distribution of polynomial values
UR - http://eudml.org/doc/206480
ER -

References

top
  1. [1] V. Bergelson, Sets of recurrence of m -actionsand properties of sets of differences in m , J. London Math. Soc. (2) 31 (1985), 295-304. Zbl0579.10029
  2. [2] A. Bertrand-Mathis, Ensembles intersectifs et recurrence de Poincaré, Israel J. Math. 55 (1986), 184-198. Zbl0611.10032
  3. [3] H. Furstenberg, Ergodic behaviour of diagonal measures and a theorem of Szemerédi onarithmetic progressions, J. Analyse Math. 31 (1977), 204-256. Zbl0347.28016
  4. [4] H. Furstenberg, Recurrence in Ergodic Theory andCombinatorial Number Theory, Princeton University Press, 1981. 
  5. [5] L. K. Hua, Additive Theory of Prime Numbers, Amer. Math. Soc.Transl. 13, 1965. Zbl0192.39304
  6. [6] T. Kamae and M. Mendès France, Van der Corput's difference theorem, Israel J. Math. 31 (1978),335-342. Zbl0396.10040
  7. [7] U. Krengel, Ergodic Theorems, de Gruyter Stud. Math. 6, 1985. 
  8. [8] R. Nair, On strong uniform distribution, Acta Arith. 56 (1990), 183-193. Zbl0716.11036
  9. [9] G. Rhin, Sur la répartition modulo 1 des suites f(p), Acta Arith. 23 (1973), 217-248. 
  10. [10] A. Sárközy, On difference sets of sequences of integers, II, Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 21(1978), 45-53. Zbl0413.10051
  11. [11] A. Sárközy, On difference sets of sequences ofintegers. III, Acta Math. Acad. Sci. Hungar. 31 (3-4) (1978),355-386. 
  12. [12] H. Weyl, Über die Gleichverteilung von Zahlenmod. Eins, Math. Ann. 77 (1916), 313-352. Zbl46.0278.06

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.