On representing the multiple of a number by a quadratic form

Todd Cochrane

Acta Arithmetica (1993)

  • Volume: 63, Issue: 3, page 211-222
  • ISSN: 0065-1036

How to cite

top

Todd Cochrane. "On representing the multiple of a number by a quadratic form." Acta Arithmetica 63.3 (1993): 211-222. <http://eudml.org/doc/206517>.

@article{ToddCochrane1993,
author = {Todd Cochrane},
journal = {Acta Arithmetica},
keywords = {representations; small multiples; quadratic form; local-to-global principles},
language = {eng},
number = {3},
pages = {211-222},
title = {On representing the multiple of a number by a quadratic form},
url = {http://eudml.org/doc/206517},
volume = {63},
year = {1993},
}

TY - JOUR
AU - Todd Cochrane
TI - On representing the multiple of a number by a quadratic form
JO - Acta Arithmetica
PY - 1993
VL - 63
IS - 3
SP - 211
EP - 222
LA - eng
KW - representations; small multiples; quadratic form; local-to-global principles
UR - http://eudml.org/doc/206517
ER -

References

top
  1. [1] Z. I. Borevich and I. R. Shafarevich, Number Theory, Academic Press, New York 1966. 
  2. [2] J. W. S. Cassels, Rational Quadratic Forms, Academic Press, New York 1978. 
  3. [3] T. Cochrane, Small solutions of congruences over algebraic number fields, Illinois J. Math. 31 (1987), 618-625. Zbl0608.12001
  4. [4] T. Cochrane, Small zeros of quadratic congruences modulo pq, Mathematika 37 (1990), 261-272. Zbl0713.11030
  5. [5] T. Cochrane, Small zeros of quadratic forms modulo p, III, J. Number Theory 37 (1) (1991), 92-99. Zbl0713.11031
  6. [6] D. Grant, Small solutions to a given quadratic form with a variable modulus, to be published. Zbl0770.11021
  7. [7] D. R. Heath-Brown, Small solutions of quadratic congruences, Glasgow Math. J. 27 (1985), 87-93. Zbl0581.10008
  8. [8] D. R. Heath-Brown, Small solutions of quadratic congruences, II, Mathematika 38 (1991), 264-284. Zbl0725.11018
  9. [9] Yu. V. Linnik and A. V. Malyshev, An elementary proof of the Kloosterman-Tartakovskiĭ theorem on the representations of numbers by positive quadratic forms, in: Proc. Fourth All-Union Math. Congr., Leningrad 1961, Vol. II, Nauka, Leningrad 1964, 116-117. 
  10. [10] J. W. Sander, A reciprocity formula for quadratic forms, Monatsh. Math. 104 (1987), 125-132. Zbl0627.10012
  11. [11] A. Schinzel, H. P. Schlickewei and W. M. Schmidt, Small solutions of quadratic congruences and small fractional parts of quadratic forms, Acta Arith. 37 (1980), 241-248. Zbl0446.10026
  12. [12] W. A. Tartakowsky [V. A. Tartakovskiĭ], La détermination de la totalité des nombres représentables par une forme quadratique à plus de quatre variables, C. R. Acad. Sci. Paris 186 (1928), 1337-1340, 1401-1403, 1684-1687. Errata to second paper: 187 (1928), 155. Zbl54.0178.01
  13. [13] G. L. Watson, Integral Quadratic Forms, Cambridge University Press, London 1960. Zbl0090.03103
  14. [14] G. L. Watson, The minimum of an indefinite quadratic form with integral coefficients, J. London Math. Soc. 32 (1957), 503-507. Zbl0079.06806
  15. [15] G. L. Watson, Bounded representations of integers by quadratic forms, Mathematika 4 (1957), 17-24. Zbl0077.26402

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.