Elliptic units of cyclic unramified extensions of complex quadratic fields

Farshid Hajir

Acta Arithmetica (1993)

  • Volume: 64, Issue: 1, page 69-85
  • ISSN: 0065-1036

How to cite

top

Farshid Hajir. "Elliptic units of cyclic unramified extensions of complex quadratic fields." Acta Arithmetica 64.1 (1993): 69-85. <http://eudml.org/doc/206536>.

@article{FarshidHajir1993,
author = {Farshid Hajir},
journal = {Acta Arithmetica},
keywords = {quadratic field; group of units; minimal set of generators; elliptic units; unramified cyclic extension; Dedekind eta function},
language = {eng},
number = {1},
pages = {69-85},
title = {Elliptic units of cyclic unramified extensions of complex quadratic fields},
url = {http://eudml.org/doc/206536},
volume = {64},
year = {1993},
}

TY - JOUR
AU - Farshid Hajir
TI - Elliptic units of cyclic unramified extensions of complex quadratic fields
JO - Acta Arithmetica
PY - 1993
VL - 64
IS - 1
SP - 69
EP - 85
LA - eng
KW - quadratic field; group of units; minimal set of generators; elliptic units; unramified cyclic extension; Dedekind eta function
UR - http://eudml.org/doc/206536
ER -

References

top
  1. [1] H. Hayashi, On elliptic units and class number of a certain dihedral extension of degree 2l, Acta Arith. 44 (1984), 35-45. Zbl0499.12002
  2. [2] D. Kubert and S. Lang, Modular Units, Springer, 1981. 
  3. [3] G. Robert, Concernant la relation de distribution satisfaite par la fonction ϕ associée à un réseau complexe, Invent. Math. 100 (1990), 231-257. Zbl0729.11029
  4. [4] C. L. Siegel, Lectures on Advanced Analytic Number Theory, Tata Institute of Fundamental Research, 1980. 
  5. [5] H. M. Stark, L-functions at s=1. IV. First derivatives at s=0, Adv. in Math. 35 (1980), 197-235. Zbl0475.12018
  6. [6] F. R. Villegas, private communication. 
  7. [7] L. Washington, Introduction to Cyclotomic Fields, Springer, 1982. Zbl0484.12001
  8. [8] H. Weber, Lehrbuch der Algebra, Vol. 3, Chelsea, 1961. 

NotesEmbed ?

top

You must be logged in to post comments.