The number of squarefull numbers in an interval

Hong-Quan Liu

Acta Arithmetica (1993)

  • Volume: 64, Issue: 2, page 129-149
  • ISSN: 0065-1036

How to cite

top

Hong-Quan Liu. "The number of squarefull numbers in an interval." Acta Arithmetica 64.2 (1993): 129-149. <http://eudml.org/doc/206542>.

@article{Hong1993,
author = {Hong-Quan Liu},
journal = {Acta Arithmetica},
keywords = {exponential sums; Fourier expansion; Poisson summation; number of squarefull integers; exponent pairs},
language = {eng},
number = {2},
pages = {129-149},
title = {The number of squarefull numbers in an interval},
url = {http://eudml.org/doc/206542},
volume = {64},
year = {1993},
}

TY - JOUR
AU - Hong-Quan Liu
TI - The number of squarefull numbers in an interval
JO - Acta Arithmetica
PY - 1993
VL - 64
IS - 2
SP - 129
EP - 149
LA - eng
KW - exponential sums; Fourier expansion; Poisson summation; number of squarefull integers; exponent pairs
UR - http://eudml.org/doc/206542
ER -

References

top
  1. [1] E. Bombieri and H. Iwaniec, On the order of ζ(1/2+it), Ann. Scuola Norm. Sup. Pisa (4) 13 (1986), 449-472. Zbl0615.10047
  2. [2] M. N. Huxley and N. Watt, Exponential sums and the Riemann zeta function, Proc. London Math. Soc. (3) 57 (1988), 1-24. 
  3. [3] H. Iwaniec and C. J. Mozzochi, On the divisor and circle problems, J. Number Theory 29 (1988), 60-93. Zbl0644.10031
  4. [4] G. Kolesnik, On the number of Abelian groups of a given order, J. Reine Angew. Math. 329 (1981), 164-175. Zbl0467.10035
  5. [5] H. Liu, On square-full numbers in short intervals, Acta Math. Sinica (N.S.) (2) 6 (1990), 148-164. Zbl0708.11044
  6. [6] E. Phillips, The zeta-function of Riemann, further developments of van der Corput's method, Quart. J. Math. Oxford 4 (1933), 209-225. Zbl59.0204.01
  7. [7] H. E. Richert, On the difference between consecutive squarefree numbers, J. London Math. Soc. 28 (1953), 16-20. Zbl0055.04001
  8. [8] P. G. Schmidt, Zur Anzahl quadratvoller Zahlen in kurzen Intervallen, Acta Arith. 46 (1986), 159-164. Zbl0565.10042
  9. [9] P. G. Schmidt, Über die Anzahl quadratvoller Zahlen in kurzen Intervallen und ein verwandtes Gitterpunkproblem. Corrigendum zu Acta Arithmetica L (1988), 195-201, Acta Arith. 54 (1990), 251-254. 
  10. [10] P. Shiu, On square-full integers in a short interval, Glasgow Math. J. 25 (1984), 127-134. Zbl0526.10035
  11. [11] I. M. Vinogradov, A new estimate for ζ(1+it), Izv. Akad. Nauk SSSR Ser. Mat. 22 (1958), 161-164 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.