Power moments of the error term in the approximate functional equation for ζ²(s)

Aleksandar Ivić

Acta Arithmetica (1993)

  • Volume: 65, Issue: 2, page 137-145
  • ISSN: 0065-1036

How to cite

top

Aleksandar Ivić. "Power moments of the error term in the approximate functional equation for ζ²(s)." Acta Arithmetica 65.2 (1993): 137-145. <http://eudml.org/doc/206566>.

@article{AleksandarIvić1993,
author = {Aleksandar Ivić},
journal = {Acta Arithmetica},
keywords = {Riemann zeta-function; approximate functional equation; Voronoï formula for the divisor problem; d(n) the number of divisors of n; Voronoi formula for the divisor problem; error term; evaluation of power moments},
language = {eng},
number = {2},
pages = {137-145},
title = {Power moments of the error term in the approximate functional equation for ζ²(s)},
url = {http://eudml.org/doc/206566},
volume = {65},
year = {1993},
}

TY - JOUR
AU - Aleksandar Ivić
TI - Power moments of the error term in the approximate functional equation for ζ²(s)
JO - Acta Arithmetica
PY - 1993
VL - 65
IS - 2
SP - 137
EP - 145
LA - eng
KW - Riemann zeta-function; approximate functional equation; Voronoï formula for the divisor problem; d(n) the number of divisors of n; Voronoi formula for the divisor problem; error term; evaluation of power moments
UR - http://eudml.org/doc/206566
ER -

References

top
  1. [1] D. R. Heath-Brown, The distribution and moments of the error term in the Dirichlet divisor problem, Acta Arith. 60 (1992), 389-415. Zbl0725.11045
  2. [2] A. Ivić, Large values of the error term in the divisor problem, Invent. Math. 71 (1983), 513-520. Zbl0489.10045
  3. [3] A. Ivić, The Riemann Zeta-function, Wiley, New York, 1985. Zbl0556.10026
  4. [4] A. Ivić, Large values of certain number-theoretic error terms, Acta Arith. 56 (1990), 135-159. Zbl0659.10053
  5. [5] H. Iwaniec and C. J. Mozzochi, On the divisor and circle problems, J. Number Theory 29 (1988), 60-93. Zbl0644.10031
  6. [6] I. Kiuchi, An improvement on the mean value formula for the approximate functional equation of the square of the Riemann zeta-function, J. Number Theory, to appear. Zbl0787.11034
  7. [7] I. Kiuchi, Power moments of the error term for the approximate functional equation of the Riemann zeta-function, Publ. Inst. Math. (Beograd) 52 (66) (1992), in print. Zbl0793.11021
  8. [8] I. Kiuchi and K. Matsumoto, Mean value results for the approximate functional equation of the square of the Riemann zeta-function, Acta Arith. 61 (1992), 337-345. Zbl0761.11035
  9. [9] T. Meurman, On the mean square of the Riemann zeta-function, Quart. J. Math. Oxford Ser. (2) 38 (1987), 337-343. Zbl0624.10032
  10. [10] Y. Motohashi, A note on the approximate functional equation for ζ²(s), Proc. Japan Acad. Ser. A 59 (1983), 393-396 and II, Quart. J. Math. Oxford Ser. 469-472. 
  11. [11] Y. Motohashi, Lectures on the Riemann-Siegel Formula, Ulam Seminar, Dept. Math., Colorado University, Boulder, 1987. 
  12. [12] E. Preissmann, Sur la moyenne quadratique du terme de reste du problème du cercle, C. R. Acad. Sci. Paris 306 (1988), 151-154. Zbl0654.10042
  13. [13] K.-C. Tong, On divisor problem III, Acta Math. Sinica 6 (1956), 515-541 (in Chinese). Zbl0075.25003
  14. [14] K.-M. Tsang, Higher power moments of Δ(x), E(t) and P(x), Proc. London Math. Soc. (3) 65 (1992), 65-84. Zbl0725.11046

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.