The Pólya-Vinogradov inequality for totally real algebraic number fields
Acta Arithmetica (1993)
- Volume: 65, Issue: 3, page 197-212
- ISSN: 0065-1036
Access Full Article
topHow to cite
topPeter Söhne. "The Pólya-Vinogradov inequality for totally real algebraic number fields." Acta Arithmetica 65.3 (1993): 197-212. <http://eudml.org/doc/206573>.
@article{PeterSöhne1993,
author = {Peter Söhne},
journal = {Acta Arithmetica},
keywords = {Pólya-Vinogradov inequality; character sums; totally real algebraic number field},
language = {eng},
number = {3},
pages = {197-212},
title = {The Pólya-Vinogradov inequality for totally real algebraic number fields},
url = {http://eudml.org/doc/206573},
volume = {65},
year = {1993},
}
TY - JOUR
AU - Peter Söhne
TI - The Pólya-Vinogradov inequality for totally real algebraic number fields
JO - Acta Arithmetica
PY - 1993
VL - 65
IS - 3
SP - 197
EP - 212
LA - eng
KW - Pólya-Vinogradov inequality; character sums; totally real algebraic number field
UR - http://eudml.org/doc/206573
ER -
References
top- [1] K. M. Bartz, On a theorem of A. V. Sokolovskiĭ, Acta Arith. 34 (1978), 113-126. Zbl0333.12008
- [2] G. H. Hardy and J. E. Littlewood, Some problems of Diophantine approximation: The lattice-points of a right-handed triangle, Proc. London Math. Soc. (2) 20 (1921), 15-36. Zbl48.0197.07
- [3] J. G. Hinz, Character sums in algebraic number fields, J. Number Theory 17 (1983), 52-70. Zbl0511.10028
- [4] K. C. Lee, On the average order of characters in totally real algebraic number fields, Chinese J. Math. 7 (1979), 77-90. Zbl0423.12003
- [5] K. Mahler, Inequalities for ideal bases in algebraic number fields, J. Austral. Math. Soc. 4 (1964), 425-448. Zbl0218.12004
- [6] H. L. Montgomery and R. C. Vaughan, Mean values of character sums, Canad. J. Math. 31 (1979), 476-487. Zbl0416.10030
- [7] G. Pólya, Über die Verteilung der quadratischen Reste und Nichtreste, Göttinger Nachr. (1918), 21-29. Zbl46.0265.02
- [8] U. Rausch, Character sums in algebraic number fields, to appear. Zbl0795.11033
- [9] G. J. Rieger, Verallgemeinerung der Siebmethode von A. Selberg auf algebraische Zahlkörper. III, J. Reine Angew. Math. 208 (1961), 79-90.
- [10] M. M. Skriganov, Lattices in algebraic number fields and uniform distribution mod 1, Leningrad Math. J. 1 (1990), 535-558. Zbl0714.11045
- [11] D. C. Spencer, The lattice points of tetrahedra, J. Math. Phys. 21 (1942), 189-197. Zbl0060.11501
- [12] T. Tatuzawa, Fourier analysis used in analytic number theory, Acta Arith. 28 (1975), 263-272 Zbl0279.42024
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.