The Pólya-Vinogradov inequality for totally real algebraic number fields

Peter Söhne

Acta Arithmetica (1993)

  • Volume: 65, Issue: 3, page 197-212
  • ISSN: 0065-1036

How to cite

top

Peter Söhne. "The Pólya-Vinogradov inequality for totally real algebraic number fields." Acta Arithmetica 65.3 (1993): 197-212. <http://eudml.org/doc/206573>.

@article{PeterSöhne1993,
author = {Peter Söhne},
journal = {Acta Arithmetica},
keywords = {Pólya-Vinogradov inequality; character sums; totally real algebraic number field},
language = {eng},
number = {3},
pages = {197-212},
title = {The Pólya-Vinogradov inequality for totally real algebraic number fields},
url = {http://eudml.org/doc/206573},
volume = {65},
year = {1993},
}

TY - JOUR
AU - Peter Söhne
TI - The Pólya-Vinogradov inequality for totally real algebraic number fields
JO - Acta Arithmetica
PY - 1993
VL - 65
IS - 3
SP - 197
EP - 212
LA - eng
KW - Pólya-Vinogradov inequality; character sums; totally real algebraic number field
UR - http://eudml.org/doc/206573
ER -

References

top
  1. [1] K. M. Bartz, On a theorem of A. V. Sokolovskiĭ, Acta Arith. 34 (1978), 113-126. Zbl0333.12008
  2. [2] G. H. Hardy and J. E. Littlewood, Some problems of Diophantine approximation: The lattice-points of a right-handed triangle, Proc. London Math. Soc. (2) 20 (1921), 15-36. Zbl48.0197.07
  3. [3] J. G. Hinz, Character sums in algebraic number fields, J. Number Theory 17 (1983), 52-70. Zbl0511.10028
  4. [4] K. C. Lee, On the average order of characters in totally real algebraic number fields, Chinese J. Math. 7 (1979), 77-90. Zbl0423.12003
  5. [5] K. Mahler, Inequalities for ideal bases in algebraic number fields, J. Austral. Math. Soc. 4 (1964), 425-448. Zbl0218.12004
  6. [6] H. L. Montgomery and R. C. Vaughan, Mean values of character sums, Canad. J. Math. 31 (1979), 476-487. Zbl0416.10030
  7. [7] G. Pólya, Über die Verteilung der quadratischen Reste und Nichtreste, Göttinger Nachr. (1918), 21-29. Zbl46.0265.02
  8. [8] U. Rausch, Character sums in algebraic number fields, to appear. Zbl0795.11033
  9. [9] G. J. Rieger, Verallgemeinerung der Siebmethode von A. Selberg auf algebraische Zahlkörper. III, J. Reine Angew. Math. 208 (1961), 79-90. 
  10. [10] M. M. Skriganov, Lattices in algebraic number fields and uniform distribution mod 1, Leningrad Math. J. 1 (1990), 535-558. Zbl0714.11045
  11. [11] D. C. Spencer, The lattice points of tetrahedra, J. Math. Phys. 21 (1942), 189-197. Zbl0060.11501
  12. [12] T. Tatuzawa, Fourier analysis used in analytic number theory, Acta Arith. 28 (1975), 263-272 Zbl0279.42024

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.