The Turán-Kubilius inequality for integers free of large prime factors (II)
Acta Arithmetica (1993)
- Volume: 65, Issue: 4, page 329-352
- ISSN: 0065-1036
Access Full Article
topHow to cite
topTi Zuo Xuan. "The Turán-Kubilius inequality for integers free of large prime factors (II)." Acta Arithmetica 65.4 (1993): 329-352. <http://eudml.org/doc/206584>.
@article{TiZuoXuan1993,
author = {Ti Zuo Xuan},
journal = {Acta Arithmetica},
keywords = {additive function; Turán-Kubilius inequality; integers free of large prime factors; additive functions},
language = {eng},
number = {4},
pages = {329-352},
title = {The Turán-Kubilius inequality for integers free of large prime factors (II)},
url = {http://eudml.org/doc/206584},
volume = {65},
year = {1993},
}
TY - JOUR
AU - Ti Zuo Xuan
TI - The Turán-Kubilius inequality for integers free of large prime factors (II)
JO - Acta Arithmetica
PY - 1993
VL - 65
IS - 4
SP - 329
EP - 352
LA - eng
KW - additive function; Turán-Kubilius inequality; integers free of large prime factors; additive functions
UR - http://eudml.org/doc/206584
ER -
References
top- [1] K. Alladi, The Turán-Kubilius inequality for integers without large prime factors, J. Reine Angew. Math. 335 (1982), 180-196. Zbl0483.10050
- [2] K. Alladi and P. Erdős, On an additive arithmetic function, Pacific J. Math. 71 (1977), 275-294. Zbl0359.10038
- [3] N. G. de Bruijn, On the number of positive integers ≤x and free of prime factors >y, Indag. Math. 13 (1951), 50-60. Zbl0042.04204
- [4] P. D. T. A. Elliott, Probabilistic Number Theory, Vol. 1, Springer, Berlin, 1980. Zbl0431.10030
- [5] A. Hildebrand, On the number of positive integers ≤x and free of prime factors >y, J. Number Theory 22 (1986), 289-307. Zbl0575.10038
- [6] A. Hildebrand and G. Tenenbaum, On integers free of large prime factors, Trans. Amer. Math. Soc. 296 (1986), 265-290. Zbl0601.10028
- [7] T. Z. Xuan, The average order of dₖ(n) over integers free of large prime factors, Acta Arith. 55 (1990), 249-260.
- [8] T. Z. Xuan, The Turán-Kubilius inequality for integers free of large prime factors, J. Number Theory 43 (1993), 82-87. Zbl0772.11035
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.