The diophantine equation x² + C = yⁿ
Acta Arithmetica (1993)
- Volume: 65, Issue: 4, page 367-381
- ISSN: 0065-1036
Access Full Article
topHow to cite
topJ. H. E. Cohn. "The diophantine equation x² + C = yⁿ." Acta Arithmetica 65.4 (1993): 367-381. <http://eudml.org/doc/206586>.
@article{J1993,
author = {J. H. E. Cohn},
journal = {Acta Arithmetica},
keywords = {exponential diophantine equation},
language = {eng},
number = {4},
pages = {367-381},
title = {The diophantine equation x² + C = yⁿ},
url = {http://eudml.org/doc/206586},
volume = {65},
year = {1993},
}
TY - JOUR
AU - J. H. E. Cohn
TI - The diophantine equation x² + C = yⁿ
JO - Acta Arithmetica
PY - 1993
VL - 65
IS - 4
SP - 367
EP - 381
LA - eng
KW - exponential diophantine equation
UR - http://eudml.org/doc/206586
ER -
References
top- [1] A. Aigner, Die diophantische Gleichung im Zusammenhang mit Klassenzahlen, Monatsh. Math. 72 (1968), 1-5. Zbl0164.04805
- [2] J. Blass, A note on diophantine equation Y²+k=X⁵, Math. Comp. 30 (1976), 638-640. Zbl0336.10012
- [3] J. Blass and R. Steiner, On the equation y²+k=x⁷, Utilitas Math. 13 (1978), 293-297. Zbl0375.10010
- [4] E. Brown, Diophantine equations of the form x²+D=yⁿ, J. Reine Angew. Math. 274/275 (1975), 385-389. Zbl0303.10014
- [5] E. Brown, Diophantine equations of the form , J. Reine Angew. Math. 291 (1977), 118-127. Zbl0338.10018
- [6] K. Chao, On the diophantine equation x²=yⁿ+1, xy≠0, Sci. Sinica (Notes) 14 (1964), 457-460.
- [7] F. B. Coghlan and N. M. Stephens, The diophantine equation x³-y²=k, in: Computers in Number Theory, Academic Press, London, 1971, 199-205.
- [8] E. L. Cohen, Sur l’équation diophantienne , C. R. Acad. Sci. Paris Sér. A 275 (1972), 5-7. Zbl0236.10008
- [9] E. L. Cohen, On the Ramanujan-Nagell equation and its generalizations, in: Proc. First Conference of the Canadian Number Theory Association, Banff, Alberta, 1988, de Gruyter, 1990, 81-92.
- [10] J. H. E. Cohn, The Diophantine equation x²+3=yⁿ, Glasgow Math. J. 35 (1993), 203-206.
- [11] J. H. E. Cohn, The diophantine equation x²+19=yⁿ, Acta Arith. 61 (1992), 193-197. Zbl0770.11018
- [12] J. H. E. Cohn, The diophantine equation x²+2^k=yⁿ, Arch. Math. (Basel) 59 (1992), 341-344. Zbl0770.11019
- [13] J. H. E. Cohn, Lucas and Fibonacci numbers and some Diophantine equations, Proc. Glasgow Math. Assoc. 7 (1965), 24-28. Zbl0127.01902
- [14] L. Euler, Algebra, Vol. 2.
- [15] O. Korhonen, On the Diophantine equation Ax²+8B=yⁿ, Acta Univ. Oulu. Ser. A Sci. Rerum Natur. Math. 16 (1979). Zbl0414.10007
- [16] O. Korhonen, On the Diophantine equation Ax²+2B=yⁿ, Acta Univ. Oulu. Ser. A Sci. Rerum Natur. Math. 17 (1979). Zbl0416.10012
- [17] O. Korhonen, On the Diophantine equation Cx²+D=yⁿ, Acta Univ. Oulu. Ser. A Sci. Rerum Natur. Math. 25 (1981). Zbl0452.10018
- [18] V. A. Lebesgue, Sur l’impossibilité en nombres entiers de l’équation , Nouvelles Annales des Mathématiques (1) 9 (1850), 178-181.
- [19] W. Ljunggren, On the diophantine equation x²+p²=yⁿ, Norske Vid. Selsk. Forh. Trondheim 16 (8) (1943), 27-30. Zbl0060.09106
- [20] W. Ljunggren, Über einige Arcustangensgleichungen die auf interessante unbestimmte Gleichungen führen, Ark. Mat. Astr. Fys. 29A (1943), no. 13. Zbl0028.10904
- [21] W. Ljunggren, On the diophantine equation x²+D=yⁿ, Norske Vid. Selsk. Forh. Trondheim 17 (23) (1944), 93-96. Zbl0060.09107
- [22] W. Ljunggren, On a diophantine equation, Norske Vid. Selsk. Forh. Trondheim 18 (32) (1945), 125-128. Zbl0060.09108
- [23] W. Ljunggren, New theorems concerning the diophantine equation Cx²+D=yⁿ, Norske Vid. Selsk. Forh. Trondheim 29 (1) (1956), 1-4.
- [24] W. Ljunggren, On the diophantine equation y²-k=x³, Acta Arith. 8 (1963), 451-463. Zbl0132.28404
- [25] W. Ljunggren, On the diophantine equation Cx²+D=yⁿ, Pacific J. Math. 14 (1964), 585-596. Zbl0131.28401
- [26] W. Ljunggren, On the diophantine equation Cx²+D=2yⁿ, Math. Scand. 18 (1966), 69-86. Zbl0223.10007
- [27] W. Ljunggren, New theorems concerning the diophantine equation , Acta Arith. 21 (1972), 183-191. Zbl0216.04101
- [28] L. J. Mordell, Diophantine Equations, Academic Press, London, 1969.
- [29] T. Nagell, Sur l'impossibilité de quelques équations à deux indéterminées, Norsk. Mat. Forensings Skrifter No. 13 (1923), 65-82.
- [30] T. Nagell, Løsning til oppgave nr 2, 1943, s. 29, Norske Mat. Tidsskrift 30 (1948), 62-64.
- [31] T. Nagell, Verallgemeinerung eines Fermatschen Satzes, Arch. Math. (Basel) 5 (1954), 153-159. Zbl0055.03608
- [32] T. Nagell, Contributions to the theory of a category of diophantine equations of the second degree with two unknowns, Nova Acta Regiae Soc. Sci. Upsaliensis (4) 16 (2) (1955).
- [33] T. Nagell, On the Diophantine equation x²+8D=yⁿ, Ark. Mat. 3 (1954), 103-112.
- [34] S. Ramanujan, Question 464, J. Indian Math. Soc. 5 (1913), 120.
- [35] T. N. Shorey, A. J. van der Poorten, R. Tijdeman and A. Schinzel, Applications of the Gel'fond-Baker method to diophantine equations, in: Transcendence Theory: Advances and Applications, Academic Press, London, 1977, 59-77. Zbl0371.10015
- [36] T. N. Shorey and R. Tijdeman, Exponential Diophantine Equations, Cambridge University Press, Cambridge, 1986. Zbl0606.10011
- [37] B. M. E. Wren, y²+D=x⁵, Eureka 36 (1973), 37-38
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.