On isolated, respectively consecutive large values of arithmetic functions
Acta Arithmetica (1994)
- Volume: 66, Issue: 3, page 269-295
- ISSN: 0065-1036
Access Full Article
topHow to cite
topReferences
top- [1] G. J. Babu and P. Erdős, A note on the distribution function of additive arithmetic functions in short intervals, Canad. Math. Bull. 32 (1989), 441-445. Zbl0638.10049
- [2] A. S. Bang, Taltheoretiske Undersøgelser, Tidskrift for Math. (5) 4 (1886), 70-80 and 130-137.
- [3] L. E. Dickson, History of the Theory of Numbers, Vol. 1, Chelsea, New York, 1952.
- [4] P. Erdős, Remarks on two problems of the Matematikai Lapok, Mat. Lapok 7 (1956), 10-17 (in Hungarian). Zbl0075.03104
- [5] P. Erdős, Remarks on two problems, Mat. Lapok 7 11 (1960), 26-32 (in Hungarian). Zbl0100.27201
- [6] P. Erdős et J.-L. Nicolas, Sur la fonction: nombre de facteurs premiers de N, Enseign. Math. 27 (1981), 3-21.
- [7] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 4th ed., Clarendon Press, Oxford, 1960. Zbl0086.25803
- [8] K. Mahler, Lectures on Diophantine Approximations, Part 1: g-adic numbers and Roth's theorem, University of Notre Dame Press, Notre Dame, 1961.
- [9] S. Ramanujan, Highly composite numbers, Proc. London Math. Soc. 14 (1915), 347-409. Zbl45.1248.01
- [10] C. L. Stewart, A note on the product of consecutive integers, in: Colloq. Math. Soc. János Bolyai 34, North-Holland, 1984, 1523-1537