On isolated, respectively consecutive large values of arithmetic functions

A. Sárközy

Acta Arithmetica (1994)

  • Volume: 66, Issue: 3, page 269-295
  • ISSN: 0065-1036

How to cite

top

A. Sárközy. "On isolated, respectively consecutive large values of arithmetic functions." Acta Arithmetica 66.3 (1994): 269-295. <http://eudml.org/doc/206606>.

@article{A1994,
author = {A. Sárközy},
journal = {Acta Arithmetica},
keywords = {occurrence of isolated large values; arithmetic functions; asymptotic formula; consecutive large values},
language = {eng},
number = {3},
pages = {269-295},
title = {On isolated, respectively consecutive large values of arithmetic functions},
url = {http://eudml.org/doc/206606},
volume = {66},
year = {1994},
}

TY - JOUR
AU - A. Sárközy
TI - On isolated, respectively consecutive large values of arithmetic functions
JO - Acta Arithmetica
PY - 1994
VL - 66
IS - 3
SP - 269
EP - 295
LA - eng
KW - occurrence of isolated large values; arithmetic functions; asymptotic formula; consecutive large values
UR - http://eudml.org/doc/206606
ER -

References

top
  1. [1] G. J. Babu and P. Erdős, A note on the distribution function of additive arithmetic functions in short intervals, Canad. Math. Bull. 32 (1989), 441-445. Zbl0638.10049
  2. [2] A. S. Bang, Taltheoretiske Undersøgelser, Tidskrift for Math. (5) 4 (1886), 70-80 and 130-137. 
  3. [3] L. E. Dickson, History of the Theory of Numbers, Vol. 1, Chelsea, New York, 1952. 
  4. [4] P. Erdős, Remarks on two problems of the Matematikai Lapok, Mat. Lapok 7 (1956), 10-17 (in Hungarian). Zbl0075.03104
  5. [5] P. Erdős, Remarks on two problems, Mat. Lapok 7 11 (1960), 26-32 (in Hungarian). Zbl0100.27201
  6. [6] P. Erdős et J.-L. Nicolas, Sur la fonction: nombre de facteurs premiers de N, Enseign. Math. 27 (1981), 3-21. 
  7. [7] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 4th ed., Clarendon Press, Oxford, 1960. Zbl0086.25803
  8. [8] K. Mahler, Lectures on Diophantine Approximations, Part 1: g-adic numbers and Roth's theorem, University of Notre Dame Press, Notre Dame, 1961. 
  9. [9] S. Ramanujan, Highly composite numbers, Proc. London Math. Soc. 14 (1915), 347-409. Zbl45.1248.01
  10. [10] C. L. Stewart, A note on the product of consecutive integers, in: Colloq. Math. Soc. János Bolyai 34, North-Holland, 1984, 1523-1537 

NotesEmbed ?

top

You must be logged in to post comments.