On isolated, respectively consecutive large values of arithmetic functions

A. Sárközy

Acta Arithmetica (1994)

  • Volume: 66, Issue: 3, page 269-295
  • ISSN: 0065-1036

How to cite

top

A. Sárközy. "On isolated, respectively consecutive large values of arithmetic functions." Acta Arithmetica 66.3 (1994): 269-295. <http://eudml.org/doc/206606>.

@article{A1994,
author = {A. Sárközy},
journal = {Acta Arithmetica},
keywords = {occurrence of isolated large values; arithmetic functions; asymptotic formula; consecutive large values},
language = {eng},
number = {3},
pages = {269-295},
title = {On isolated, respectively consecutive large values of arithmetic functions},
url = {http://eudml.org/doc/206606},
volume = {66},
year = {1994},
}

TY - JOUR
AU - A. Sárközy
TI - On isolated, respectively consecutive large values of arithmetic functions
JO - Acta Arithmetica
PY - 1994
VL - 66
IS - 3
SP - 269
EP - 295
LA - eng
KW - occurrence of isolated large values; arithmetic functions; asymptotic formula; consecutive large values
UR - http://eudml.org/doc/206606
ER -

References

top
  1. [1] G. J. Babu and P. Erdős, A note on the distribution function of additive arithmetic functions in short intervals, Canad. Math. Bull. 32 (1989), 441-445. Zbl0638.10049
  2. [2] A. S. Bang, Taltheoretiske Undersøgelser, Tidskrift for Math. (5) 4 (1886), 70-80 and 130-137. 
  3. [3] L. E. Dickson, History of the Theory of Numbers, Vol. 1, Chelsea, New York, 1952. 
  4. [4] P. Erdős, Remarks on two problems of the Matematikai Lapok, Mat. Lapok 7 (1956), 10-17 (in Hungarian). Zbl0075.03104
  5. [5] P. Erdős, Remarks on two problems, Mat. Lapok 7 11 (1960), 26-32 (in Hungarian). Zbl0100.27201
  6. [6] P. Erdős et J.-L. Nicolas, Sur la fonction: nombre de facteurs premiers de N, Enseign. Math. 27 (1981), 3-21. 
  7. [7] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 4th ed., Clarendon Press, Oxford, 1960. Zbl0086.25803
  8. [8] K. Mahler, Lectures on Diophantine Approximations, Part 1: g-adic numbers and Roth's theorem, University of Notre Dame Press, Notre Dame, 1961. 
  9. [9] S. Ramanujan, Highly composite numbers, Proc. London Math. Soc. 14 (1915), 347-409. Zbl45.1248.01
  10. [10] C. L. Stewart, A note on the product of consecutive integers, in: Colloq. Math. Soc. János Bolyai 34, North-Holland, 1984, 1523-1537 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.