On x³ + y³ + z³ = 3μxyz and Jacobi polynomials
Acta Arithmetica (1994)
- Volume: 68, Issue: 1, page 27-39
- ISSN: 0065-1036
Access Full Article
topHow to cite
topReferences
top- [1] H. Bateman, Higher Transcendental Functions, Vol. 2, McGraw-Hill, 1953.
- [2] R. Courant and D. Hilbert, Methods of Mathematical Physics, Vol. 1, Interscience, 1953. Zbl0051.28802
- [3] R. Hartshorne, Algebraic Geometry, Graduate Texts in Math. 52, Springer, 1977.
- [4] T. Honda, On the theory of commutative formal groups, J. Math. Soc. Japan 22 (1970), 213-246. Zbl0202.03101
- [5] T. Honda, Two congruence properties of Legendre polynomials, Osaka J. Math. 13 (1976), 131-133. Zbl0345.12101
- [6] J. P. Serre, Sur la topologie des variétés algébriques en caractéristique p, in: Œuvres, Vol. 1, 38, 501-530.
- [7] J. H. Silverman, The Arithmetic of Elliptic Curves, Graduate Texts in Math. 106, Springer, 1986.
- [8] N. Yui, Jacobi quartics, Legendre polynomials and formal groups, in: Elliptic Curves and Modular Forms in Algebraic Topology, Lecture Notes in Math. 1326, Springer, 1988, 182-215.