On x³ + y³ + z³ = 3μxyz and Jacobi polynomials

Kaori Ota

Acta Arithmetica (1994)

  • Volume: 68, Issue: 1, page 27-39
  • ISSN: 0065-1036

How to cite

top

Kaori Ota. "On x³ + y³ + z³ = 3μxyz and Jacobi polynomials." Acta Arithmetica 68.1 (1994): 27-39. <http://eudml.org/doc/206642>.

@article{KaoriOta1994,
author = {Kaori Ota},
journal = {Acta Arithmetica},
keywords = {elliptic curve; invariant differential form; Jacobi polynomials; congruences; Cartier operators; algebraic curves; Frobenius map; Honda theory},
language = {eng},
number = {1},
pages = {27-39},
title = {On x³ + y³ + z³ = 3μxyz and Jacobi polynomials},
url = {http://eudml.org/doc/206642},
volume = {68},
year = {1994},
}

TY - JOUR
AU - Kaori Ota
TI - On x³ + y³ + z³ = 3μxyz and Jacobi polynomials
JO - Acta Arithmetica
PY - 1994
VL - 68
IS - 1
SP - 27
EP - 39
LA - eng
KW - elliptic curve; invariant differential form; Jacobi polynomials; congruences; Cartier operators; algebraic curves; Frobenius map; Honda theory
UR - http://eudml.org/doc/206642
ER -

References

top
  1. [1] H. Bateman, Higher Transcendental Functions, Vol. 2, McGraw-Hill, 1953. 
  2. [2] R. Courant and D. Hilbert, Methods of Mathematical Physics, Vol. 1, Interscience, 1953. Zbl0051.28802
  3. [3] R. Hartshorne, Algebraic Geometry, Graduate Texts in Math. 52, Springer, 1977. 
  4. [4] T. Honda, On the theory of commutative formal groups, J. Math. Soc. Japan 22 (1970), 213-246. Zbl0202.03101
  5. [5] T. Honda, Two congruence properties of Legendre polynomials, Osaka J. Math. 13 (1976), 131-133. Zbl0345.12101
  6. [6] J. P. Serre, Sur la topologie des variétés algébriques en caractéristique p, in: Œuvres, Vol. 1, 38, 501-530. 
  7. [7] J. H. Silverman, The Arithmetic of Elliptic Curves, Graduate Texts in Math. 106, Springer, 1986. 
  8. [8] N. Yui, Jacobi quartics, Legendre polynomials and formal groups, in: Elliptic Curves and Modular Forms in Algebraic Topology, Lecture Notes in Math. 1326, Springer, 1988, 182-215. 

NotesEmbed ?

top

You must be logged in to post comments.