Sums of coefficients of Hecke series

Aleksandar Ivić; Tom Meurman

Acta Arithmetica (1994)

  • Volume: 68, Issue: 4, page 341-368
  • ISSN: 0065-1036

How to cite

top

Aleksandar Ivić, and Tom Meurman. "Sums of coefficients of Hecke series." Acta Arithmetica 68.4 (1994): 341-368. <http://eudml.org/doc/206665>.

@article{AleksandarIvić1994,
author = {Aleksandar Ivić, Tom Meurman},
journal = {Acta Arithmetica},
keywords = {holomorphic cusp forms; Hecke series; Maass wave form; mean square; Ramanujan-Petersson conjecture},
language = {eng},
number = {4},
pages = {341-368},
title = {Sums of coefficients of Hecke series},
url = {http://eudml.org/doc/206665},
volume = {68},
year = {1994},
}

TY - JOUR
AU - Aleksandar Ivić
AU - Tom Meurman
TI - Sums of coefficients of Hecke series
JO - Acta Arithmetica
PY - 1994
VL - 68
IS - 4
SP - 341
EP - 368
LA - eng
KW - holomorphic cusp forms; Hecke series; Maass wave form; mean square; Ramanujan-Petersson conjecture
UR - http://eudml.org/doc/206665
ER -

References

top
  1. [1] D. Bump, The Rankin-Selberg method: a survey, in: Number Theory, Trace Formulas and Discrete Groups, Sympos. in honor of A. Selberg (Oslo, 1987), Academic Press, Boston, 1989, 49-109. 
  2. [2] D. Bump, W. Duke, D. Ginsburg, J. Hoffstein and H. Iwaniec, An estimate for Fourier coefficients of Maass wave forms, Duke Math. J. 66 (1992), 75-81. Zbl0760.11017
  3. [3] K. Chandrasekharan and R. Narasimhan, Functional equations with multiple gamma-factors and the average order of arithmetical functions, Ann. of Math. 76 (1962), 93-136. Zbl0211.37901
  4. [4] K. Chandrasekharan and R. Narasimhan, On the mean value of the error term for a class of arithmetical functions, Acta Math. 112 (1964), 41-67. Zbl0128.26302
  5. [5] J.-M. Deshouillers and H. Iwaniec, The non-vanishing of the Rankin-Selberg zeta-functions at special points, in: Selberg Trace Formulas, Contemp. Math. 53, Amer. Math. Soc., Providence, R.I., 1986, 51-95. 
  6. [6] A. Erdélyi et al ., Higher Transcendental Functions, Vol. 2, McGraw-Hill, New York, 1953. Zbl0051.30303
  7. [7] J. L. Hafner and A. Ivić, On sums of Fourier coefficients of cusp forms, Enseign. Math. 35 (1989), 375-382. Zbl0696.10020
  8. [8] A. Ivić, The Riemann Zeta-Function, Wiley, New York, 1985. 
  9. [9] A. Ivić, Lectures on Mean Values of the Riemann Zeta-Function, Tata Inst. Fund. Res. Lect. Notes 82, Bombay, 1991, Springer, Berlin, 1991. Zbl0758.11036
  10. [10] A. Ivić and Y. Motohashi, A note on the mean value of the zeta and L-functions. VII, Proc. Japan Acad. Ser. A 66 (1990), 150-152. 
  11. [11] H. Iwaniec, Fourier coefficients of cusp forms and the Riemann zeta-function, Séminaire de Théorie des Nombres, Université Bordeaux 1979/80, exp. no. 18. Zbl0438.10030
  12. [12] H. Iwaniec, Non-holomorphic modular forms and their applications, in: Modular Forms, R. A. Rankin (ed.), Sympos. Durham 1983, Halsted Press, New York, 1984, 157-196. 
  13. [13] H. Iwaniec, Promenade along modular forms and analytic number theory, in: Topics in Analytic Number Theory, S. W. Graham and J. D. Vaaler (eds.), University of Texas Press, Austin, Texas, 1985, 221-303. Zbl0599.10017
  14. [14] H. Iwaniec, Small eigenvalues of the Laplacian for Γ₀(N), Acta Arith. 56 (1990), 65-82. Zbl0702.11034
  15. [15] H. Iwaniec, The spectral growth of automorphic L-functions, J. Reine Angew. Math. 428 (1992), 139-159. Zbl0746.11024
  16. [16] M. Jutila, A Method in the Theory of Exponential Sums, Tata Inst. Fund. Res. Lect. Notes 80, Bombay, 1987, Springer, Berlin, 1987. 
  17. [17] N. V. Kuznetsov, Petersson hypothesis for forms of weight zero and Linnik's conjecture. Sums of Kloosterman sums, Math. USSR-Sb. 39 (1981), 299-342. Zbl0461.10017
  18. [18] N. V. Kuznetsov, Mean value of Hecke series associated with cusp forms of weight zero, Zap. Nauchn. Sem. LOMI 109 (1981), 93-130 (in Russian). Zbl0446.10023
  19. [19] N. V. Kuznetsov, Convolution of the Fourier coefficients of the Eisenstein-Maass series, Zap. Nauchn. Sem. LOMI 129 (1983), 43-84 (in Russian). Zbl0496.10013
  20. [20] T. Meurman, On exponential sums involving the Fourier coefficients of Maass wave forms, J. Reine Angew. Math. 384 (1985), 192-207. Zbl0627.10017
  21. [21] T. Meurman, On the mean square of the Riemann zeta-function, Quart. J. Math. (Oxford) (2) 38 (1987), 337-343. Zbl0624.10032
  22. [22] C. Moreno and F. Shahidi, The L-functions L ( s , S y m m ( r ) , π ) , Canad. Math. Bull. 28 (1985), 405-410. Zbl0577.10027
  23. [23] Y. Motohashi, A note on the mean value of the zeta and L-functions. VI, Proc. Japan Acad. Ser. A 65 (1989), 273-275. Zbl0699.10055
  24. [24] Y. Motohashi, An explicit formula for the fourth power mean of the Riemann zeta-function, Acta Math. 170 (1993), 181-220. Zbl0784.11042
  25. [25] M. R. Murty, On the estimation of eigenvalues of Hecke operators, Rocky Mountain J. Math. 15 (1985), 521-533. Zbl0588.10027
  26. [26] E. Preissmann, Sur la moyenne quadratique du terme de reste du problème du cercle, C. R. Acad. Sci. Paris Sér. I 306 (1988), 151-154. Zbl0654.10042
  27. [27] N. V. Proskurin, Convolution of Dirichlet series with Fourier coefficients of parabolic forms of weight zero, Zap. Nauchn. Sem. LOMI 93 (1980), 204-217 (in Russian). 
  28. [28] R. A. Rankin, Contributions to the theory of Ramanujan's function τ(n) and similar arithmetical functions II. The order of the Fourier coefficients of integral modular forms, Proc. Cambridge Philos. Soc. Math. 35 (1939), 357-372. Zbl0021.39202
  29. [29] E. C. Titchmarsh, The Theory of the Riemann Zeta-Function, 2nd ed., Clarendon Press, Oxford, 1986. Zbl0601.10026
  30. [30] K.-C. Tong, On divisors problems III, Acta Math. Sinica 6 (1956), 515-541 (in Chinese). 
  31. [31] G. N. Watson, A Treatise on the Theory of Bessel Functions, 2nd ed., Cambridge University Press, Cambridge, 1944. Zbl0063.08184

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.