Cyclotomic numbers of order 2l, l an odd prime
Vinaykumar V. Acharya; S. A. Katre
Acta Arithmetica (1995)
- Volume: 69, Issue: 1, page 51-74
- ISSN: 0065-1036
Access Full Article
topHow to cite
topReferences
top- [1] B. C. Berndt and R. J. Evans, Sums of Gauss, Eisenstein, Jacobi, Jacobsthal and Brewer, Illinois J. Math. 23 (1979), 374-437.
- [2] N. Buck and K. S. Williams, Sequel to Muskat's evaluation of the cyclotomic numbers of order fourteen, Carleton Mathematical Series 216, November 1985, Carleton University, Ottawa, 22 pp.
- [3] L. E. Dickson, Cyclotomy, higher congruences, and Waring's problem, Amer. J. Math. 57 (1935), 391-424. Zbl0012.01203
- [4] L. E. Dickson, Cyclotomy and trinomial congruences, Trans. Amer. Math. Soc. 37 (1935), 363-380. Zbl0011.29301
- [5] M. Hall, Cyclotomy and characters, in: Proc. Sympos. Pure Math. 8, Amer. Math. Soc., 1965, 31-43.
- [6] S. A. Katre and A. R. Rajwade, Complete solution of the cyclotomic problem in for any prime modulus l, , p≡ 1 (mod l), Acta Arith. 45 (1985), 183-199. Zbl0525.12015
- [7] S. A. Katre and A. R. Rajwade, Resolution of the sign ambiguity in the determination of the cyclotomic numbers of order 4 and the corresponding Jacobsthal sum, Math. Scand. 60 (1987), 52-62. Zbl0602.12005
- [8] J. B. Muskat, The cyclotomic numbers of order fourteen, Acta Arith. 11 (1966), 263-279. Zbl0139.28101
- [9] J. C. Parnami, M. K. Agrawal and A. R. Rajwade, Jacobi sums and cyclotomic numbers for a finite field, Acta Arith. 41 (1982), 1-13. Zbl0491.12019
- [10] T. Storer, On the unique determination of the cyclotomic numbers for Galois fields and Galois domains, J. Combin. Theory 2 (1967), 296-300. Zbl0154.04903
- [11] A. L. Whiteman, Cyclotomic numbers of order 10, in: Proc. Sympos. Appl. Math. 10, Amer. Math. Soc., 1960, 95-111.
- [12] Y. C. Zee, Jacobi sums of order 22, Proc. Amer. Math. Soc. 28 (1971), 25-31 Zbl0213.32901