Cyclotomic numbers of order 2l, l an odd prime

Vinaykumar V. Acharya; S. A. Katre

Acta Arithmetica (1995)

  • Volume: 69, Issue: 1, page 51-74
  • ISSN: 0065-1036

How to cite

top

Vinaykumar V. Acharya, and S. A. Katre. "Cyclotomic numbers of order 2l, l an odd prime." Acta Arithmetica 69.1 (1995): 51-74. <http://eudml.org/doc/206672>.

@article{VinaykumarV1995,
author = {Vinaykumar V. Acharya, S. A. Katre},
journal = {Acta Arithmetica},
keywords = {finite fields; cyclotomic numbers; Jacobi sums; diophantine system},
language = {eng},
number = {1},
pages = {51-74},
title = {Cyclotomic numbers of order 2l, l an odd prime},
url = {http://eudml.org/doc/206672},
volume = {69},
year = {1995},
}

TY - JOUR
AU - Vinaykumar V. Acharya
AU - S. A. Katre
TI - Cyclotomic numbers of order 2l, l an odd prime
JO - Acta Arithmetica
PY - 1995
VL - 69
IS - 1
SP - 51
EP - 74
LA - eng
KW - finite fields; cyclotomic numbers; Jacobi sums; diophantine system
UR - http://eudml.org/doc/206672
ER -

References

top
  1. [1] B. C. Berndt and R. J. Evans, Sums of Gauss, Eisenstein, Jacobi, Jacobsthal and Brewer, Illinois J. Math. 23 (1979), 374-437. 
  2. [2] N. Buck and K. S. Williams, Sequel to Muskat's evaluation of the cyclotomic numbers of order fourteen, Carleton Mathematical Series 216, November 1985, Carleton University, Ottawa, 22 pp. 
  3. [3] L. E. Dickson, Cyclotomy, higher congruences, and Waring's problem, Amer. J. Math. 57 (1935), 391-424. Zbl0012.01203
  4. [4] L. E. Dickson, Cyclotomy and trinomial congruences, Trans. Amer. Math. Soc. 37 (1935), 363-380. Zbl0011.29301
  5. [5] M. Hall, Cyclotomy and characters, in: Proc. Sympos. Pure Math. 8, Amer. Math. Soc., 1965, 31-43. 
  6. [6] S. A. Katre and A. R. Rajwade, Complete solution of the cyclotomic problem in * q for any prime modulus l, q = p α , p≡ 1 (mod l), Acta Arith. 45 (1985), 183-199. Zbl0525.12015
  7. [7] S. A. Katre and A. R. Rajwade, Resolution of the sign ambiguity in the determination of the cyclotomic numbers of order 4 and the corresponding Jacobsthal sum, Math. Scand. 60 (1987), 52-62. Zbl0602.12005
  8. [8] J. B. Muskat, The cyclotomic numbers of order fourteen, Acta Arith. 11 (1966), 263-279. Zbl0139.28101
  9. [9] J. C. Parnami, M. K. Agrawal and A. R. Rajwade, Jacobi sums and cyclotomic numbers for a finite field, Acta Arith. 41 (1982), 1-13. Zbl0491.12019
  10. [10] T. Storer, On the unique determination of the cyclotomic numbers for Galois fields and Galois domains, J. Combin. Theory 2 (1967), 296-300. Zbl0154.04903
  11. [11] A. L. Whiteman, Cyclotomic numbers of order 10, in: Proc. Sympos. Appl. Math. 10, Amer. Math. Soc., 1960, 95-111. 
  12. [12] Y. C. Zee, Jacobi sums of order 22, Proc. Amer. Math. Soc. 28 (1971), 25-31 Zbl0213.32901

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.