Independence of solution sets and minimal asymptotic bases

Paul Erdős; Melvyn B. Nathanson; Prasad Tetali

Acta Arithmetica (1995)

  • Volume: 69, Issue: 3, page 243-258
  • ISSN: 0065-1036

How to cite

top

Paul Erdős, Melvyn B. Nathanson, and Prasad Tetali. "Independence of solution sets and minimal asymptotic bases." Acta Arithmetica 69.3 (1995): 243-258. <http://eudml.org/doc/206686>.

@article{PaulErdős1995,
author = {Paul Erdős, Melvyn B. Nathanson, Prasad Tetali},
journal = {Acta Arithmetica},
keywords = {minimal asymptotic bases; restricted asymptotic bases},
language = {eng},
number = {3},
pages = {243-258},
title = {Independence of solution sets and minimal asymptotic bases},
url = {http://eudml.org/doc/206686},
volume = {69},
year = {1995},
}

TY - JOUR
AU - Paul Erdős
AU - Melvyn B. Nathanson
AU - Prasad Tetali
TI - Independence of solution sets and minimal asymptotic bases
JO - Acta Arithmetica
PY - 1995
VL - 69
IS - 3
SP - 243
EP - 258
LA - eng
KW - minimal asymptotic bases; restricted asymptotic bases
UR - http://eudml.org/doc/206686
ER -

References

top
  1. [1] P. Erdős and M. B. Nathanson, Oscillations of bases for the natural numbers, Proc. Amer. Math. Soc. 53 (1975), 253-258. Zbl0319.10066
  2. [2] P. Erdős and M. B. Nathanson, Independence of solution sets in additive number theory, in: Probability, Statistical Mechanics, and Number Theory, G.-C. Rota (ed.), Adv. Math. Suppl. Stud. 9 (1986), 97-105. 
  3. [3] P. Erdős and M. B. Nathanson, Systems of distinct representatives and minimal bases in additive number theory, in: Number Theory, Carbondale 1979, M. B. Nathanson (ed.), Lecture Notes in Math. 751, Springer, Heidelberg, 1979, 89-107. 
  4. [4] P. Erdős and M. B. Nathanson, Problems and results on minimal bases in additive number theory, in: Number Theory, New York 1985-86, D. V. Chudnovsky, G. V. Chudnovsky, H. Cohn, and M. B. Nathanson (eds.), Lecture Notes in Math. 1240, Springer, Heidelberg, 1987, 87-96. 
  5. [5] P. Erdős and R. Rado, Intersection theorems for systems of sets, J. London Math. Soc. 35 (1960), 85-90. Zbl0103.27901
  6. [6] P. Erdős and A. Rényi, Additive properties of random sequences of positive integers, Acta Arith. 6 (1960), 83-110. Zbl0091.04401
  7. [7] P. Erdős and P. Tetali, Representations of integers as the sum of k terms, Random Structures and Algorithms 1 (1990), 245-261. Zbl0725.11007
  8. [8] H. Halberstam and K. F. Roth, Sequences, Springer, Heidelberg, 1983. 
  9. [9] X.-D. Jia, Simultaneous systems of representatives for finite families of finite sets, Proc. Amer. Math. Soc. 104 (1988), 33-36. Zbl0662.10041
  10. [10] M. B. Nathanson, Simultaneous systems of representatives for families of finite sets, Proc. Amer. Math. Soc. 103 (1988), 1322-1326. Zbl0709.05006

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.