Independence of solution sets and minimal asymptotic bases

Paul Erdős; Melvyn B. Nathanson; Prasad Tetali

Acta Arithmetica (1995)

  • Volume: 69, Issue: 3, page 243-258
  • ISSN: 0065-1036

How to cite

top

Paul Erdős, Melvyn B. Nathanson, and Prasad Tetali. "Independence of solution sets and minimal asymptotic bases." Acta Arithmetica 69.3 (1995): 243-258. <http://eudml.org/doc/206686>.

@article{PaulErdős1995,
author = {Paul Erdős, Melvyn B. Nathanson, Prasad Tetali},
journal = {Acta Arithmetica},
keywords = {minimal asymptotic bases; restricted asymptotic bases},
language = {eng},
number = {3},
pages = {243-258},
title = {Independence of solution sets and minimal asymptotic bases},
url = {http://eudml.org/doc/206686},
volume = {69},
year = {1995},
}

TY - JOUR
AU - Paul Erdős
AU - Melvyn B. Nathanson
AU - Prasad Tetali
TI - Independence of solution sets and minimal asymptotic bases
JO - Acta Arithmetica
PY - 1995
VL - 69
IS - 3
SP - 243
EP - 258
LA - eng
KW - minimal asymptotic bases; restricted asymptotic bases
UR - http://eudml.org/doc/206686
ER -

References

top
  1. [1] P. Erdős and M. B. Nathanson, Oscillations of bases for the natural numbers, Proc. Amer. Math. Soc. 53 (1975), 253-258. Zbl0319.10066
  2. [2] P. Erdős and M. B. Nathanson, Independence of solution sets in additive number theory, in: Probability, Statistical Mechanics, and Number Theory, G.-C. Rota (ed.), Adv. Math. Suppl. Stud. 9 (1986), 97-105. 
  3. [3] P. Erdős and M. B. Nathanson, Systems of distinct representatives and minimal bases in additive number theory, in: Number Theory, Carbondale 1979, M. B. Nathanson (ed.), Lecture Notes in Math. 751, Springer, Heidelberg, 1979, 89-107. 
  4. [4] P. Erdős and M. B. Nathanson, Problems and results on minimal bases in additive number theory, in: Number Theory, New York 1985-86, D. V. Chudnovsky, G. V. Chudnovsky, H. Cohn, and M. B. Nathanson (eds.), Lecture Notes in Math. 1240, Springer, Heidelberg, 1987, 87-96. 
  5. [5] P. Erdős and R. Rado, Intersection theorems for systems of sets, J. London Math. Soc. 35 (1960), 85-90. Zbl0103.27901
  6. [6] P. Erdős and A. Rényi, Additive properties of random sequences of positive integers, Acta Arith. 6 (1960), 83-110. Zbl0091.04401
  7. [7] P. Erdős and P. Tetali, Representations of integers as the sum of k terms, Random Structures and Algorithms 1 (1990), 245-261. Zbl0725.11007
  8. [8] H. Halberstam and K. F. Roth, Sequences, Springer, Heidelberg, 1983. 
  9. [9] X.-D. Jia, Simultaneous systems of representatives for finite families of finite sets, Proc. Amer. Math. Soc. 104 (1988), 33-36. Zbl0662.10041
  10. [10] M. B. Nathanson, Simultaneous systems of representatives for families of finite sets, Proc. Amer. Math. Soc. 103 (1988), 1322-1326. Zbl0709.05006

NotesEmbed ?

top

You must be logged in to post comments.