Integers with no large prime factors

Ti Zuo Xuan

Acta Arithmetica (1995)

  • Volume: 69, Issue: 4, page 303-327
  • ISSN: 0065-1036

How to cite

top

Ti Zuo Xuan. "Integers with no large prime factors." Acta Arithmetica 69.4 (1995): 303-327. <http://eudml.org/doc/206690>.

@article{TiZuoXuan1995,
author = {Ti Zuo Xuan},
journal = {Acta Arithmetica},
keywords = {integers free of large prime factors; asymptotic estimates; sieve methods},
language = {eng},
number = {4},
pages = {303-327},
title = {Integers with no large prime factors},
url = {http://eudml.org/doc/206690},
volume = {69},
year = {1995},
}

TY - JOUR
AU - Ti Zuo Xuan
TI - Integers with no large prime factors
JO - Acta Arithmetica
PY - 1995
VL - 69
IS - 4
SP - 303
EP - 327
LA - eng
KW - integers free of large prime factors; asymptotic estimates; sieve methods
UR - http://eudml.org/doc/206690
ER -

References

top
  1. [1] N. G. de Bruijn, On the number of positive integers ≤x and free of prime factors >y, Nederl. Akad. Wetensch. Proc. Ser. A 54 (1951), 50-60. Zbl0042.04204
  2. [2] N. G. de Bruijn, The asymptotic behavior of a function occurring in the theory of primes, J. Indian Math. Soc. (N.S.) 15 (1951), 25-32. Zbl0043.06502
  3. [3] H. G. Diamond and H. Halberstam, The combinatorial sieve, in: Number Theory, Proc. 4th Matsci. Conf. Ootacamund/India 1984, Lecture Notes in Math. 1122, Springer, 1985, 63-73 
  4. [4] E. Fouvry et G. Tenenbaum, Entiers sans grand facteur premier en progressions arithmétiques, Proc. London Math. Soc. (3) 63 (1991), 449-494. Zbl0745.11042
  5. [5] H. Halberstam and H.-E. Richert, Sieve Methods, Academic Press, London, 1974. Zbl0298.10026
  6. [6] D. G. Hazlewood, Sums over positive integers with few prime factors, J. Number Theory 7 (1975), 189-207. Zbl0302.10037
  7. [7] A. Hildebrand, On the number of positive integers ≤x and free of prime factors >y, J. Number Theory 22 (1986), 289-307. Zbl0575.10038
  8. [8] A. Hildebrand and G. Tenenbaum, On integers free of large prime factors, Trans. Amer. Math. Soc. 296 (1986), 265-290. Zbl0601.10028
  9. [9] K. K. Norton, Numbers with small prime factors and the least k-th power non residue, Mem. Amer. Math. Soc. 106 (1971). Zbl0211.37801
  10. [10] H. E. Richert, Zur Abschätzung der Riemannschen Zetafunktion in der Nähe der Vertikalen σ = 1, Math. Ann. 169 (1967), 97-101. Zbl0161.04802
  11. [11] E. Saias, Sur le nombre des entiers sans grand facteur premier, J. Number Theory 32 (1989), 78-99. Zbl0676.10028
  12. [12] G. Tenenbaum, Cribler les entiers sans grand facteur premier, Philos. Trans. Roy. Soc. London Ser. A 345 (1993), 377-384. 
  13. [13] E. C. Titchmarsh, The Theory of the Riemann Zeta-Function, 2nd ed. revised by D. R. Heath-Brown, Oxford, 1986. Zbl0601.10026
  14. [14] A. I. Vinogradov, On numbers with small prime divisors, Dokl. Akad. Nauk SSSR (N.S.) 109 (1956), 683-686 (in Russian). Zbl0071.27004

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.