A generalization of the Goldbach-Vinogradov theorem
Acta Arithmetica (1995)
- Volume: 71, Issue: 2, page 95-106
- ISSN: 0065-1036
Access Full Article
topHow to cite
topT. Zhan. "A generalization of the Goldbach-Vinogradov theorem." Acta Arithmetica 71.2 (1995): 95-106. <http://eudml.org/doc/206768>.
@article{T1995,
author = {T. Zhan},
journal = {Acta Arithmetica},
keywords = {circle method; Iwaniec's linear sieve},
language = {eng},
number = {2},
pages = {95-106},
title = {A generalization of the Goldbach-Vinogradov theorem},
url = {http://eudml.org/doc/206768},
volume = {71},
year = {1995},
}
TY - JOUR
AU - T. Zhan
TI - A generalization of the Goldbach-Vinogradov theorem
JO - Acta Arithmetica
PY - 1995
VL - 71
IS - 2
SP - 95
EP - 106
LA - eng
KW - circle method; Iwaniec's linear sieve
UR - http://eudml.org/doc/206768
ER -
References
top- [1] P. X. Gallagher, A large sieve density estimate near σ=1, Invent. Math. 11 (1970), 329-339. Zbl0219.10048
- [2] H. Halberstam and H.-E. Richert, Sieve Method, Academic Press, 1974.
- [3] G. Harman, Primes in short intervals, Math. Z. 180 (1982), 335-348. Zbl0482.10040
- [4] H. Iwaniec, A new form of the error term in the linear sieve, Acta Arith. 37 (1980), 307-320. Zbl0444.10038
- [5] C. Jia, Three primes theorem in short intervals, to appear. Zbl0688.10044
- [6] H. Mikawa, On the exceptional set in Goldbach problem, to appear. Zbl0778.11054
- [7] Chengdong Pan, Some new results in additive number theory, Acta Math. Sinica 9 (1959), 315-329.
- [8] Chengdong Pan and Chengbiao Pan, Goldbach Conjecture, Science Press, Peking, 1981.
- [9] B. Saffari and R. C. Vaughan, On the fractional parts of x/n and related sequences II, Ann. Inst. Fourier (Grenoble) 27 (1977), 1-30. Zbl0379.10023
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.