On Šnirelman's constant under the Riemann hypothesis

Leszek Kaniecki

Acta Arithmetica (1995)

  • Volume: 72, Issue: 4, page 361-374
  • ISSN: 0065-1036

How to cite

top

Leszek Kaniecki. "On Šnirelman's constant under the Riemann hypothesis." Acta Arithmetica 72.4 (1995): 361-374. <http://eudml.org/doc/206802>.

@article{LeszekKaniecki1995,
author = {Leszek Kaniecki},
journal = {Acta Arithmetica},
keywords = {Schnirelman constant; Riemann hypothesis; Goldbach's conjecture; primes in short intervals},
language = {eng},
number = {4},
pages = {361-374},
title = {On Šnirelman's constant under the Riemann hypothesis},
url = {http://eudml.org/doc/206802},
volume = {72},
year = {1995},
}

TY - JOUR
AU - Leszek Kaniecki
TI - On Šnirelman's constant under the Riemann hypothesis
JO - Acta Arithmetica
PY - 1995
VL - 72
IS - 4
SP - 361
EP - 374
LA - eng
KW - Schnirelman constant; Riemann hypothesis; Goldbach's conjecture; primes in short intervals
UR - http://eudml.org/doc/206802
ER -

References

top
  1. [1] J. R. Chen and T. Z. Wang, On the odd Goldbach problem, Acta Math. Sinica 32 (1989), 702-718 (in Chinese). Zbl0695.10041
  2. [2] H. Davenport, Multiplicative Number Theory, Springer, 1980. 
  3. [3] M. Deshouillers, Sur la constante de Schnirelmann, Sém. Delange-Pisot-Poitou, 17e année, 1975/6, fasc. 2, exp. No. G 16, 6 p., Paris, 1977. 
  4. [4] H. M. Edwards, Riemann's Zeta Function, Academic Press, 1974. Zbl0315.10035
  5. [5] A. Granville, J. van de Lune and H. J. J. te Riele, Checking the Goldbach conjecture on a vector computer, in: Number Theory and Applications, R. A. Mollin (ed.), Kluwer, Dordrecht, 1989, 423-433. Zbl0679.10002
  6. [6] L. Kaniecki, Some remarks on a result of A. Selberg, Funct. Approx. Comment. Math. 22 (1993), 171-179. Zbl0824.11050
  7. [7] H. L. Montgomery and R. C. Vaughan, The exceptional set in Goldbach's problem, Acta Arith. 27 (1975), 353-370. Zbl0301.10043
  8. [8] K. Prachar, Primzahlverteilung, Springer, 1957. 
  9. [9] O. Ramaré, On Šnirelman's constant, Les prépublication de l'Institut Élie Cartan 95, no 4, to appear. 
  10. [10] H. Riesel and R. C. Vaughan, On sums of primes, Ark. Mat. 21 (1983), 45-74. Zbl0516.10044
  11. [11] L. Schoenfeld, Sharper bounds for the Čebyshev functions ψ and θ, II, Math. Comp. 30 (1976), 337-360. Zbl0326.10037
  12. [12] A. Selberg, On the normal density of primes in small intervals and the differences between consecutive primes, Arch. Math. Naturvid. (6) 47 (1943), 87-105. Zbl0063.06869
  13. [13] M. K. Shen, On checking the Goldbach conjecture, Nordisk Tidskr. 4 (1964), 243-245. Zbl0136.33602
  14. [14] M. K. Sinisalo, Checking the Goldbach conjecture up to 4· 10¹¹, Math. Comp. 61 (1993), 931-934. Zbl0783.11037
  15. [15] M. L. Stein and P. R. Stein, New experimental results on the Goldbach conjecture, Math. Mag. 38 (1965), 72-80. Zbl0132.03102
  16. [16] J. Young and A. Potler, First occurrence prime gaps, Math. Comp. 52 (1989), 221-224. Zbl0661.10011

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.