Structure galoisienne et corps de classes de rayon de conducteur 2

E. J. Gómez Ayala

Acta Arithmetica (1995)

  • Volume: 72, Issue: 4, page 375-383
  • ISSN: 0065-1036

How to cite

top

E. J. Gómez Ayala. "Structure galoisienne et corps de classes de rayon de conducteur 2." Acta Arithmetica 72.4 (1995): 375-383. <http://eudml.org/doc/206803>.

@article{E1995,
author = {E. J. Gómez Ayala},
journal = {Acta Arithmetica},
keywords = {Galois structure; ray class field with conductor 2; cubic tamely ramified extension; ring of integers; normal basis},
language = {fre},
number = {4},
pages = {375-383},
title = {Structure galoisienne et corps de classes de rayon de conducteur 2},
url = {http://eudml.org/doc/206803},
volume = {72},
year = {1995},
}

TY - JOUR
AU - E. J. Gómez Ayala
TI - Structure galoisienne et corps de classes de rayon de conducteur 2
JO - Acta Arithmetica
PY - 1995
VL - 72
IS - 4
SP - 375
EP - 383
LA - fre
KW - Galois structure; ray class field with conductor 2; cubic tamely ramified extension; ring of integers; normal basis
UR - http://eudml.org/doc/206803
ER -

References

top
  1. [1] B. J. Birch, Weber's class invariants, Mathematika 16 (1969), 283-294. Zbl0226.12005
  2. [2] E. Brown and C. J. Parry, The imaginary bicyclic biquadratic fields with class-number 1, J. Reine Angew. Math. 260 (1973), 118-120. Zbl0287.12015
  3. [3] E. J. Gómez Ayala, Bases normales d'entiers dans les extensions de Kummer de degré premier, J. Théor. Nombres Bordeaux 6 (1994), 95-116. 
  4. [4] E. Hecke, Lectures on the Theory of Algebraic Numbers, Springer, New York, 1981. 
  5. [5] T. Kubota, Über den bizyklischen biquadratischen Zahlkörper, Nagoya Math. J. 10 (1956), 65-85. Zbl0074.03001
  6. [6] S. Lang, Algebraic Number Theory, Addison-Wesley, 1970. Zbl0211.38404
  7. [7] S. Lang, Elliptic Functions, 2nd ed., Springer, New York, 1987. 
  8. [8] R. L. Long, Algebraic Number Theory, Marcel Dekker, New York, 1977. Zbl0362.12001
  9. [9] J. Martinet et J.-J. Payan, Sur les extensions cubiques non galoisiennes des rationnels et leur clôture galoisienne, J. Reine Angew. Math. 228 (1967), 15-37. Zbl0161.05302
  10. [10] R. Schertz, lettre à Ph. Cassou-Noguès du 4-2-91. 
  11. [11] H. Weber, Lehrbuch der Algebra, Bd. III, Braunschweig, 1908. 

NotesEmbed ?

top

You must be logged in to post comments.