The period lengths of inversive congruential recursions

Wun-Seng Chou

Acta Arithmetica (1995)

  • Volume: 73, Issue: 4, page 325-341
  • ISSN: 0065-1036

How to cite

top

Wun-Seng Chou. "The period lengths of inversive congruential recursions." Acta Arithmetica 73.4 (1995): 325-341. <http://eudml.org/doc/206823>.

@article{Wun1995,
author = {Wun-Seng Chou},
journal = {Acta Arithmetica},
keywords = {pseudorandom numbers; period length; generalized inversive congruential recursion},
language = {eng},
number = {4},
pages = {325-341},
title = {The period lengths of inversive congruential recursions},
url = {http://eudml.org/doc/206823},
volume = {73},
year = {1995},
}

TY - JOUR
AU - Wun-Seng Chou
TI - The period lengths of inversive congruential recursions
JO - Acta Arithmetica
PY - 1995
VL - 73
IS - 4
SP - 325
EP - 341
LA - eng
KW - pseudorandom numbers; period length; generalized inversive congruential recursion
UR - http://eudml.org/doc/206823
ER -

References

top
  1. [1] W.-S. Chou, On inversive maximal period polynomials over finite fields, Appl. Algebra Engrg. Comm. Comput. 6 (1995), 245-250. Zbl0832.11042
  2. [2] W.-S. Chou, The period lengths of inversive pseudorandom vector generators, Finite Fields Appl. 1 (1995), 126-132. Zbl0822.11054
  3. [3] J. Eichenauer and J. Lehn, A non-linear congruential pseudorandom number generator, Statist. Hefte 27 (1986), 315-326. Zbl0607.65001
  4. [4] J. Eichenauer, J. Lehn and A. Topuzoğlu, A nonlinear congruential pseudorandom number generator with power of two modulus, Math. Comp. 51 (1988), 757-759. Zbl0701.65008
  5. [5] J. Eichenauer-Herrmann, Inversive congruential pseudorandom numbers: a tutorial, Internat. Statist. Rev. 60 (1992), 167-176. Zbl0766.65002
  6. [6] J. Eichenauer-Herrmann, Construction of inversive congruential pseudorandom number generators with maximal period length, J. Comput. Appl. Math. 40 (1992), 345-349. Zbl0761.65001
  7. [7] J. Eichenauer-Herrmann and A. Topuzoğlu, On the period length of congruential pseudorandom number sequences generated by inversions, J. Comput. Appl. Math. 31 (1990), 87-96. Zbl0704.65001
  8. [8] M. Flahive and H. Niederreiter, On inversive congruential generators for pseudorandom numbers, in: Finite Fields, Coding Theory, and Advances in Communications and Computing, G. L. Mullen and P. J.-S. Shiue (eds.), Marcel Dekker, New York, 1992, 75-80. Zbl0790.11058
  9. [9] K. Huber, On the period length of generalized inversive pseudorandom generators, Appl. Algebra Engrg. Comm. Comput. 5 (1994), 255-260. Zbl0796.11030
  10. [10] H. Niederreiter, Finite fields and their applications, in: Contributions to General Algebra, Vol. 7, Vienna, 1990, Teubner, Stuttgart, 1991. Zbl0742.11057
  11. [11] H. Niederreiter, Random Number Generation and Quasi-Monte Carlo Methods, SIAM, Philadelphia, PA, 1992. Zbl0761.65002
  12. [12] H. Niederreiter, Pseudorandom vector generation by the inversive method, ACM Trans. Modeling & Computer Simulation 4 (1994), 191-212. Zbl0847.11039

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.