Algebraic independence of the values of power series generated by linear recurrences
Acta Arithmetica (1996)
- Volume: 74, Issue: 2, page 177-190
- ISSN: 0065-1036
Access Full Article
topHow to cite
topReferences
top- [1] J. W. S. Cassels, Local Fields, Cambridge University Press, 1986.
- [2] F. R. Gantmacher, Applications of the Theory of Matrices, Vol. II, Interscience, New York, 1959.
- [3] J. H. Loxton and A. J. van der Poorten, Algebraic independence properties of the Fredholm series, J. Austral. Math. Soc. Ser. A 26 (1978), 31-45. Zbl0392.10034
- [4] K. Mahler, Arithmetische Eigenschaften der Lösungen einer Klasse von Funktionalgleichungen, Math. Ann. 101 (1929), 342-366. Zbl55.0115.01
- [5] D. W. Masser, A vanishing theorem for power series, Invent. Math. 67 (1982), 275-296. Zbl0481.10034
- [6] K. Nishioka, Conditions for algebraic independence of certain power series of algebraic numbers, Compositio Math. 62 (1987), 53-61. Zbl0615.10042
- [7] K. Nishioka, Algebraic independence of Mahler functions and their values, Tôhoku Math. J., to appear. Zbl0852.11036