Sums of squares of integral linear forms
Acta Arithmetica (1996)
- Volume: 74, Issue: 3, page 231-240
- ISSN: 0065-1036
Access Full Article
topHow to cite
topMaría Inés Icaza. "Sums of squares of integral linear forms." Acta Arithmetica 74.3 (1996): 231-240. <http://eudml.org/doc/206849>.
@article{MaríaInésIcaza1996,
author = {María Inés Icaza},
journal = {Acta Arithmetica},
keywords = {sums of squares of integral linear forms; totally real number field},
language = {eng},
number = {3},
pages = {231-240},
title = {Sums of squares of integral linear forms},
url = {http://eudml.org/doc/206849},
volume = {74},
year = {1996},
}
TY - JOUR
AU - María Inés Icaza
TI - Sums of squares of integral linear forms
JO - Acta Arithmetica
PY - 1996
VL - 74
IS - 3
SP - 231
EP - 240
LA - eng
KW - sums of squares of integral linear forms; totally real number field
UR - http://eudml.org/doc/206849
ER -
References
top- [BI] R. Baeza and M. I. Icaza, Decomposition of positive definite integral quadratic forms as sums of positive definite quadratic forms, in: Proc. Sympos. Pure Math., Amer. Math. Soc. 58 (1995), 63-72. Zbl0820.11024
- [BLOP] R. Baeza, D. Leep, M. O'Ryan and J. P. Prieto, Sums of squares of linear forms, Math. Z. 193 (1986), 297-306. Zbl0598.10032
- [BEH]₁ J. W. Benham and J. S. Hsia, On spinor exceptional representations, Nagoya Math. J. 87 (1982), 247-260. Zbl0455.10013
- [BEH]₂ J. W. Benham and J. S. Hsia, Spinor equivalence of quadratic forms, J. Number Theory 17 (1983), 337-342. Zbl0532.10012
- [HKK] J. S. Hsia, Y. Kitaoka and M. Kneser, Representations of positive definite quadratic forms, J. Reine Angew. Math. 301 (1978), 132-141. Zbl0374.10013
- [H]₁ P. Humbert, Théorie de la réduction des formes quadratiques définies positives dans un corps algébrique fini, Comment. Math. Helv. 12 (1939/40), 263-306. Zbl66.0125.02
- [H]₂ P. Humbert, Réduction des formes quadratiques dans un corps algébrique fini, Comment. Math. Helv. 23 (1949), 50-63. Zbl0034.31102
- [I] M. I. Icaza, Effectiveness in representations of positive definite quadratic forms, Dissertation, The Ohio State University, 1992.
- [Ki] Y. Kitaoka, Siegel Modular Forms and Representation by Quadratic Forms, Tata Inst. Fund. Res. Stud. Math. Bombay, Springer, 1986. Zbl0596.10020
- [Ko] C. Ko, On the representation of a quadratic form as a sum of squares of linear forms, Quart. J. Math. Oxford 8 (1937), 81-98. Zbl63.0123.03
- [Mo]₁ L. J. Mordell, A new Waring's problem with squares of linear forms, Quart. J. Math. Oxford 1 (1930), 276-288. Zbl56.0883.06
- [Mo]₂ L. J. Mordell, On the representation of a binary quadratic form as a sum of squares of linear forms, Math. Z. 35 (1932), 1-15.
- [Mo]₃ L. J. Mordell, The representation of a definite quadratic form as a sum of two other, Ann. of Math. 38 (1937), 751-757. Zbl0017.38803
- [O'M]₁ O. T. O'Meara, Introduction to Quadratic Forms, Grundlehren Math. Wiss. 117, Springer, 1973.
- [O'M]₂ O. T. O'Meara, The integral representation of quadratic forms over local rings, Amer. J. Math. 80 (1958), 843-878.
- [R] C. Riehm, On the representation of quadratic forms over local fields, Amer. J. Math. 86 (1964), 25-62. Zbl0135.08702
- [VdW] B. L. van der Waerden, Die Reduktionstheorie der positiven quadratischen Formen, Acta Math. 96 (1956), 265-309. Zbl0072.03601
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.