Sums of squares of integral linear forms

María Inés Icaza

Acta Arithmetica (1996)

  • Volume: 74, Issue: 3, page 231-240
  • ISSN: 0065-1036

How to cite

top

María Inés Icaza. "Sums of squares of integral linear forms." Acta Arithmetica 74.3 (1996): 231-240. <http://eudml.org/doc/206849>.

@article{MaríaInésIcaza1996,
author = {María Inés Icaza},
journal = {Acta Arithmetica},
keywords = {sums of squares of integral linear forms; totally real number field},
language = {eng},
number = {3},
pages = {231-240},
title = {Sums of squares of integral linear forms},
url = {http://eudml.org/doc/206849},
volume = {74},
year = {1996},
}

TY - JOUR
AU - María Inés Icaza
TI - Sums of squares of integral linear forms
JO - Acta Arithmetica
PY - 1996
VL - 74
IS - 3
SP - 231
EP - 240
LA - eng
KW - sums of squares of integral linear forms; totally real number field
UR - http://eudml.org/doc/206849
ER -

References

top
  1. [BI] R. Baeza and M. I. Icaza, Decomposition of positive definite integral quadratic forms as sums of positive definite quadratic forms, in: Proc. Sympos. Pure Math., Amer. Math. Soc. 58 (1995), 63-72. Zbl0820.11024
  2. [BLOP] R. Baeza, D. Leep, M. O'Ryan and J. P. Prieto, Sums of squares of linear forms, Math. Z. 193 (1986), 297-306. Zbl0598.10032
  3. [BEH]₁ J. W. Benham and J. S. Hsia, On spinor exceptional representations, Nagoya Math. J. 87 (1982), 247-260. Zbl0455.10013
  4. [BEH]₂ J. W. Benham and J. S. Hsia, Spinor equivalence of quadratic forms, J. Number Theory 17 (1983), 337-342. Zbl0532.10012
  5. [HKK] J. S. Hsia, Y. Kitaoka and M. Kneser, Representations of positive definite quadratic forms, J. Reine Angew. Math. 301 (1978), 132-141. Zbl0374.10013
  6. [H]₁ P. Humbert, Théorie de la réduction des formes quadratiques définies positives dans un corps algébrique fini, Comment. Math. Helv. 12 (1939/40), 263-306. Zbl66.0125.02
  7. [H]₂ P. Humbert, Réduction des formes quadratiques dans un corps algébrique fini, Comment. Math. Helv. 23 (1949), 50-63. Zbl0034.31102
  8. [I] M. I. Icaza, Effectiveness in representations of positive definite quadratic forms, Dissertation, The Ohio State University, 1992. 
  9. [Ki] Y. Kitaoka, Siegel Modular Forms and Representation by Quadratic Forms, Tata Inst. Fund. Res. Stud. Math. Bombay, Springer, 1986. Zbl0596.10020
  10. [Ko] C. Ko, On the representation of a quadratic form as a sum of squares of linear forms, Quart. J. Math. Oxford 8 (1937), 81-98. Zbl63.0123.03
  11. [Mo]₁ L. J. Mordell, A new Waring's problem with squares of linear forms, Quart. J. Math. Oxford 1 (1930), 276-288. Zbl56.0883.06
  12. [Mo]₂ L. J. Mordell, On the representation of a binary quadratic form as a sum of squares of linear forms, Math. Z. 35 (1932), 1-15. 
  13. [Mo]₃ L. J. Mordell, The representation of a definite quadratic form as a sum of two other, Ann. of Math. 38 (1937), 751-757. Zbl0017.38803
  14. [O'M]₁ O. T. O'Meara, Introduction to Quadratic Forms, Grundlehren Math. Wiss. 117, Springer, 1973. 
  15. [O'M]₂ O. T. O'Meara, The integral representation of quadratic forms over local rings, Amer. J. Math. 80 (1958), 843-878. 
  16. [R] C. Riehm, On the representation of quadratic forms over local fields, Amer. J. Math. 86 (1964), 25-62. Zbl0135.08702
  17. [VdW] B. L. van der Waerden, Die Reduktionstheorie der positiven quadratischen Formen, Acta Math. 96 (1956), 265-309. Zbl0072.03601

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.