On the pure Jacobi sums
Acta Arithmetica (1996)
- Volume: 75, Issue: 2, page 97-104
- ISSN: 0065-1036
Access Full Article
topHow to cite
topShigeki Akiyama. "On the pure Jacobi sums." Acta Arithmetica 75.2 (1996): 97-104. <http://eudml.org/doc/206870>.
@article{ShigekiAkiyama1996,
author = {Shigeki Akiyama},
journal = {Acta Arithmetica},
keywords = {pure Jacobi sums; character sums; root of unity},
language = {eng},
number = {2},
pages = {97-104},
title = {On the pure Jacobi sums},
url = {http://eudml.org/doc/206870},
volume = {75},
year = {1996},
}
TY - JOUR
AU - Shigeki Akiyama
TI - On the pure Jacobi sums
JO - Acta Arithmetica
PY - 1996
VL - 75
IS - 2
SP - 97
EP - 104
LA - eng
KW - pure Jacobi sums; character sums; root of unity
UR - http://eudml.org/doc/206870
ER -
References
top- [1] L. D. Baumert, W. H. Mills and R. L. Ward, Uniform cyclotomy, J. Number Theory 14 (1982), 67-82.
- [2] B. C. Berndt and R. J. Evans, Sums of Gauss, Jacobi, Jacobsthal, J. Number Theory 11 (1979), 349-398. Zbl0412.10027
- [3] B. C. Berndt and R. J. Evans Sums of Gauss, Eisenstein, Jacobi, Jacobsthal, and Brewer, Illinois J. Math. 23 (1979), 374-437.
- [4] B. C. Berndt and R. J. Evans Sums of Gauss, The determination of Gauss sums, Bull. Amer. Math. Soc. (N.S.) 5 (1981), 107-129. Zbl0471.10028
- [5] B. C. Berndt and R. J. Evans Sums of Gauss, Corrigendum to 'The determination of Gauss sums', Bull. Amer. Math. Soc. (N.S.) 7 (1982), 441.
- [6] S. Chowla, On Gaussian sums, Proc. Nat. Acad. Sci. U.S.A. 48 (1962), 1127-1128.
- [7] R. J. Evans, Generalization of a theorem of Chowla on Gaussian sums, Houston J. Math. 3 (1977), 343-349. Zbl0372.10028
- [8] R. J. Evans, Resolution of sign ambiguities in Jacobi and Jacobsthal sums, Pacific J. Math. 81 (1979), 71-80. Zbl0419.10037
- [9] R. J. Evans, Pure Gauss sums over finite fields, Mathematika 28 (1981), 239-248. Zbl0475.10032
- [10] T. Ito, H. Ishibashi, A. Munemasa and M. Yamada, The Terwilliger algebra of cyclotomic schemes and rationality of Jacobi Sums, in: Abstracts of the Conference on Algebraic Combinatorics, Fukuoka, 1993, 43-44.
- [11] D. S. Kubert and S. Lang, Independence of modular units on Tate curves, Math. Ann. 240 (1979), 191-201. Zbl0382.14008
- [12] S. Lang, Cyclotomic Fields, I and II, Graduate Texts in Math. 121, Springer, 1990.
- [13] L. Mordell, On a cyclotomic resolvent, Arch. Math. (Basel) 13 (1962), 486-487. Zbl0112.03401
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.