The two parameter hyperbola problem
Acta Arithmetica (1996)
- Volume: 75, Issue: 3, page 277-285
- ISSN: 0065-1036
Access Full Article
topHow to cite
topG. Kuba. "The two parameter hyperbola problem." Acta Arithmetica 75.3 (1996): 277-285. <http://eudml.org/doc/206877>.
@article{G1996,
author = {G. Kuba},
journal = {Acta Arithmetica},
keywords = {generalized divisor problem; asymptotic expansion for the distribution function; number of lattice points enclosed by the hyperbola and its asymptotes; discrete Hardy-Littlewood method},
language = {eng},
number = {3},
pages = {277-285},
title = {The two parameter hyperbola problem},
url = {http://eudml.org/doc/206877},
volume = {75},
year = {1996},
}
TY - JOUR
AU - G. Kuba
TI - The two parameter hyperbola problem
JO - Acta Arithmetica
PY - 1996
VL - 75
IS - 3
SP - 277
EP - 285
LA - eng
KW - generalized divisor problem; asymptotic expansion for the distribution function; number of lattice points enclosed by the hyperbola and its asymptotes; discrete Hardy-Littlewood method
UR - http://eudml.org/doc/206877
ER -
References
top- [1] J. G. van der Corput, Zahlentheoretische Abschätzungen mit Anwendungen auf Gitterpunktsprobleme, Math. Z. 17 (1923), 250-259. Zbl49.0130.01
- [2] F. Fricker, Einführung in die Gitterpunktlehre, Birkhäuser, Basel, 1982. Zbl0489.10001
- [3] M. N. Huxley, Exponential sums and lattice points, Proc. London Math. Soc. (3) 60 (1990), 471-502. Zbl0659.10057
- [4] M. N. Huxley, Exponential sums and lattice points II, Proc. London Math. Soc. 66 (1993), 279-301. Zbl0820.11060
- [5] M. N. Huxley, Corrigenda: 'Exponential sums and lattice points II', Proc. London Math. Soc. 68 (1994), 264.
- [6] M. N. Huxley and N. Watt, The number of ideals in a quadratic field, Proc. Indian Acad. Sci. (Math. Sci.) 104 (1994), 157-165. Zbl0797.11066
- [7] G. Kuba, The two parameter ellipse problem, Math. Slovaca 44 (1994), 585-593. Zbl0830.11036
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.