A note on the equation a x n - b y n = c

Maurice Mignotte

Acta Arithmetica (1996)

  • Volume: 75, Issue: 3, page 287-295
  • ISSN: 0065-1036

How to cite

top

Maurice Mignotte. "A note on the equation $ax^n - by^n = c$." Acta Arithmetica 75.3 (1996): 287-295. <http://eudml.org/doc/206878>.

@article{MauriceMignotte1996,
author = {Maurice Mignotte},
journal = {Acta Arithmetica},
keywords = {exponential diophantine equations; absolute upper bound for the degree ; explicit lower bound; binary form of degree ; linear forms in two logarithms of algebraic numbers},
language = {eng},
number = {3},
pages = {287-295},
title = {A note on the equation $ax^n - by^n = c$},
url = {http://eudml.org/doc/206878},
volume = {75},
year = {1996},
}

TY - JOUR
AU - Maurice Mignotte
TI - A note on the equation $ax^n - by^n = c$
JO - Acta Arithmetica
PY - 1996
VL - 75
IS - 3
SP - 287
EP - 295
LA - eng
KW - exponential diophantine equations; absolute upper bound for the degree ; explicit lower bound; binary form of degree ; linear forms in two logarithms of algebraic numbers
UR - http://eudml.org/doc/206878
ER -

References

top
  1. [B] A. Baker, On the representation of integers by binary forms, Philos. Trans. Roy. Soc. London Ser. A 263 (1968), 173-191. Zbl0157.09702
  2. [LMN] M. Laurent, M. Mignotte et Y. Nesterenko, Formes linéaires en deux logarithmes et déterminants d'interpolation, J. Number Theory 55 (1995), 285-321. 
  3. [M] L. J. Mordell, Diophantine Equations, Academic Press, London, 1969. 
  4. [S] C. L. Siegel, Die Gleichung a x r - b y r = c , Math. Ann. 144 (1937), 57-68. Also Gesammelte Abhandlungen, II (1966). 
  5. [Sh] T. N. Shorey, Linear forms in the logarithms of algebraic numbers with small coefficients I, J. Indian Math. Soc. 38 (1974), 271-284. Zbl0349.10028
  6. [ST] T. N. Shorey and R. Tijdeman, Exponential Diophantine Equations, Cambridge University Press, 1986. Zbl0606.10011
  7. [Th] A. Thue, Berechnung aller Lösungen gewisser Gleichungen der Form a x r - b y r = f , Vid. Selskap Skrifter Kristiana Mat. Natur. Kl. (1918), No 4. 
  8. [Ti] R. Tijdeman, Some applications of Baker's sharpened bounds to diophantine equations, Séminaire Delange-Pisot-Poitou, 1974/75, Exp. 27, Paris, 7 pp. 
  9. [W] M. Waldschmidt, Minorations de combinaisons linéaires de logarithmes de nombres algébriques, Canad. J. Math. 45 (1993), 176-224 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.