Symmetry and specializability in continued fractions

Henry Cohn

Acta Arithmetica (1996)

  • Volume: 75, Issue: 4, page 297-320
  • ISSN: 0065-1036

How to cite

top

Henry Cohn. "Symmetry and specializability in continued fractions." Acta Arithmetica 75.4 (1996): 297-320. <http://eudml.org/doc/206879>.

@article{HenryCohn1996,
author = {Henry Cohn},
journal = {Acta Arithmetica},
keywords = {continued fraction; symmetry; specializable continued fraction expansion; Chebyshev polynomials},
language = {eng},
number = {4},
pages = {297-320},
title = {Symmetry and specializability in continued fractions},
url = {http://eudml.org/doc/206879},
volume = {75},
year = {1996},
}

TY - JOUR
AU - Henry Cohn
TI - Symmetry and specializability in continued fractions
JO - Acta Arithmetica
PY - 1996
VL - 75
IS - 4
SP - 297
EP - 320
LA - eng
KW - continued fraction; symmetry; specializable continued fraction expansion; Chebyshev polynomials
UR - http://eudml.org/doc/206879
ER -

References

top
  1. [1] A. Blanchard et M. Mendès France, Symétrie et transcendance, Bull. Sci. Math. 106 (1982), 325-335 
  2. [2] R. Graham, D. Knuth and O. Patashnik, Concrete Mathematics, Addison-Wesley, Reading, 1989. 
  3. [3] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Oxford University Press, Oxford, 1979. Zbl0423.10001
  4. [4] M. Kmošek, Continued fraction expansion of some irrational numbers, Master's Thesis, Uniwersytet Warszawski, Warszawa, 1979 (in Polish). 
  5. [5] G. Köhler, Some more predictable continued fractions, Monatsh. Math. 89 (1980), 95-100. Zbl0419.10010
  6. [6] M. Mendès France, Sur les fractions continues limitées, Acta Arith. 23 (1973), 207-215. Zbl0228.10007
  7. [7] M. Mendès France and A. J. van der Poorten, Some explicit continued fraction expansions, Mathematika 38 (1991), 1-9. 
  8. [8] A. Ostrowski, Über einige Verallgemeinerungen des Eulerschen Produktes ν = 0 ( 1 + x 2 ν ) = 1 / ( 1 - x ) , Verh. Naturf. Ges. Basel 2 (1929), 153-214. 
  9. [9] A. J. van der Poorten and J. Shallit, Folded continued fractions, J. Number Theory 40 (1992), 237-250. Zbl0753.11005
  10. [10] A. J. van der Poorten and J. Shallit, A specialised continued fraction, Canad. J. Math. 45 (1993), 1067-1079. Zbl0797.11007
  11. [11] J. Shallit, Simple continued fractions for some irrational numbers, J. Number Theory 11 (1979), 209-217. Zbl0404.10003
  12. [12] J. Shallit, Simple continued fractions for some irrational numbers II, J. Number Theory 14 (1982), 228-231. Zbl0481.10005
  13. [13] J. Tamura, Explicit formulae for certain series representing quadratic irrationals, in: Number Theory and Combinatorics, J. Akiyama et al. (eds.), World Scientific, Singapore, 1985, 369-381. 
  14. [14] J. Tamura, Symmetric continued fractions related to certain series, J. Number Theory 38 (1991), 251-264. Zbl0734.11005

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.