# Symmetry and specializability in continued fractions

Acta Arithmetica (1996)

- Volume: 75, Issue: 4, page 297-320
- ISSN: 0065-1036

## Access Full Article

top## How to cite

topHenry Cohn. "Symmetry and specializability in continued fractions." Acta Arithmetica 75.4 (1996): 297-320. <http://eudml.org/doc/206879>.

@article{HenryCohn1996,

author = {Henry Cohn},

journal = {Acta Arithmetica},

keywords = {continued fraction; symmetry; specializable continued fraction expansion; Chebyshev polynomials},

language = {eng},

number = {4},

pages = {297-320},

title = {Symmetry and specializability in continued fractions},

url = {http://eudml.org/doc/206879},

volume = {75},

year = {1996},

}

TY - JOUR

AU - Henry Cohn

TI - Symmetry and specializability in continued fractions

JO - Acta Arithmetica

PY - 1996

VL - 75

IS - 4

SP - 297

EP - 320

LA - eng

KW - continued fraction; symmetry; specializable continued fraction expansion; Chebyshev polynomials

UR - http://eudml.org/doc/206879

ER -

## References

top- [1] A. Blanchard et M. Mendès France, Symétrie et transcendance, Bull. Sci. Math. 106 (1982), 325-335
- [2] R. Graham, D. Knuth and O. Patashnik, Concrete Mathematics, Addison-Wesley, Reading, 1989.
- [3] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Oxford University Press, Oxford, 1979. Zbl0423.10001
- [4] M. Kmošek, Continued fraction expansion of some irrational numbers, Master's Thesis, Uniwersytet Warszawski, Warszawa, 1979 (in Polish).
- [5] G. Köhler, Some more predictable continued fractions, Monatsh. Math. 89 (1980), 95-100. Zbl0419.10010
- [6] M. Mendès France, Sur les fractions continues limitées, Acta Arith. 23 (1973), 207-215. Zbl0228.10007
- [7] M. Mendès France and A. J. van der Poorten, Some explicit continued fraction expansions, Mathematika 38 (1991), 1-9.
- [8] A. Ostrowski, Über einige Verallgemeinerungen des Eulerschen Produktes ${\prod}_{\nu =0}^{\infty}(1+{x}^{{2}^{\nu}})=1/(1-x)$, Verh. Naturf. Ges. Basel 2 (1929), 153-214.
- [9] A. J. van der Poorten and J. Shallit, Folded continued fractions, J. Number Theory 40 (1992), 237-250. Zbl0753.11005
- [10] A. J. van der Poorten and J. Shallit, A specialised continued fraction, Canad. J. Math. 45 (1993), 1067-1079. Zbl0797.11007
- [11] J. Shallit, Simple continued fractions for some irrational numbers, J. Number Theory 11 (1979), 209-217. Zbl0404.10003
- [12] J. Shallit, Simple continued fractions for some irrational numbers II, J. Number Theory 14 (1982), 228-231. Zbl0481.10005
- [13] J. Tamura, Explicit formulae for certain series representing quadratic irrationals, in: Number Theory and Combinatorics, J. Akiyama et al. (eds.), World Scientific, Singapore, 1985, 369-381.
- [14] J. Tamura, Symmetric continued fractions related to certain series, J. Number Theory 38 (1991), 251-264. Zbl0734.11005

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.