Asymptotic behaviour of some infinite products involvingprime numbers

Hsien-Kuei Hwang

Acta Arithmetica (1996)

  • Volume: 75, Issue: 4, page 339-350
  • ISSN: 0065-1036

How to cite

top

Hsien-Kuei Hwang. "Asymptotic behaviour of some infinite products involvingprime numbers." Acta Arithmetica 75.4 (1996): 339-350. <http://eudml.org/doc/206881>.

@article{Hsien1996,
author = {Hsien-Kuei Hwang},
journal = {Acta Arithmetica},
keywords = {asymptotic behaviour; entire functions; infinite products; number of prime factors; number of irreducible factors of monic polynomials; finite field; Mellin transform},
language = {eng},
number = {4},
pages = {339-350},
title = {Asymptotic behaviour of some infinite products involvingprime numbers},
url = {http://eudml.org/doc/206881},
volume = {75},
year = {1996},
}

TY - JOUR
AU - Hsien-Kuei Hwang
TI - Asymptotic behaviour of some infinite products involvingprime numbers
JO - Acta Arithmetica
PY - 1996
VL - 75
IS - 4
SP - 339
EP - 350
LA - eng
KW - asymptotic behaviour; entire functions; infinite products; number of prime factors; number of irreducible factors of monic polynomials; finite field; Mellin transform
UR - http://eudml.org/doc/206881
ER -

References

top
  1. [1] M. Car, Factorisation dans F q [ X ] , C. R. Acad. Sci. Paris Sér. I Math. 294 (1982), 147-150. Zbl0492.12010
  2. [2] A. Erdélyi, Higher Transcendental Functions, Vol. I, Krieger, Malabar, Fla., 1953. Zbl0051.30303
  3. [3] M. A. Evgrafov, Asymptotic Estimates and Entire Functions, Gordon and Breach, New York, 1961 (translated from Russian by A. L. Shields). 
  4. [4] P. Flajolet, X. Gourdon, and P. Dumas, Mellin transforms and asymptotics: harmonic sums, Theoret. Comput. Sci. 144 (1995), 3-58. Zbl0869.68057
  5. [5] P. Flajolet and M. Soria, Gaussian limiting distributions for the number of components in combinatorial structures, J. Combin. Theory Ser. A 53 (1990), 165-182. Zbl0691.60035
  6. [6] D. Hensley, The distribution of round numbers, Proc. London Math. Soc. (3) 54 (1987), 412-444. Zbl0588.10047
  7. [7] A. Hildebrand and G. Tenenbaum, On the number of prime factors of an integer, Duke Math. J. 56 (1988), 471-501. Zbl0655.10036
  8. [8] H.-K. Hwang, Théorèmes limites pour les structures combinatoires et les fonctions arithmétiques, Thèse, Ecole Polytechnique, 1994. 
  9. [9] A. Ivić, The Riemann Zeta-Function, Wiley, New York, 1985. Zbl0556.10026
  10. [10] A. Knopfmacher, J. Knopfmacher, and R. Warlimont, 'Factorisatio numerorum' in arithmetical semigroups, Acta Arith. 61 (1992), 327-336. Zbl0772.11038
  11. [11] J. Knopfmacher, Abstract Analytic Number Theory, North-Holland, Amsterdam, 1975. Zbl0322.10001
  12. [12] J. Knopfmacher, Analytic Arithmetic of Algebraic Function Fields, Lecture Notes in Pure and Appl. Math. 50, Dekker, New York, 1979. Zbl0411.10001
  13. [13] K. K. Norton, On the frequencies of large values of divisor functions, Acta Arith. 68 (1994), 219-244. Zbl0816.11047
  14. [14] G. J. Rieger, Zum Teilerproblem von Atle Selberg, Math. Nachr. 30 (1965), 181-192 
  15. [15] L. G. Sathe, On a problem of Hardy and Ramanujan on the distribution of integers having a given number of prime factors, I, II, III, IV, J. Indian Math. Soc. 17 (1953), 63-141; 18 (1954), 27-81. Zbl0051.28008
  16. [16] A. Selberg, Note on a paper by L. G. Sathe, J. Indian Math. Soc. 18 (1954), 83-87. 
  17. [17] G. Tenenbaum, Introduction à la théorie analytique et probabiliste des nombres, Institut Elie Cartan, Université de Nancy I, Nancy, 1990. 
  18. [18] E. C. Titchmarsh, The Theory of the Riemann Zeta-Function, Oxford, 1951; 2nd ed., revised and edited by D. R. Heath-Brown, Oxford Sci. Publ., Clarendon Press, Oxford, 1986. Zbl0042.07901
  19. [19] R. Warlimont, Arithmetical semigroups IV: Selberg's analysis, Arch. Math. (Basel) 60 (1993), 58-72. Zbl0809.11058
  20. [20] R. Wong, Asymptotic Approximations of Integrals, Academic Press, Boston, 1989. Zbl0679.41001

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.