Farey series and the Riemann hypothesis

S. Kanemitsu; M. Yoshimoto

Acta Arithmetica (1996)

  • Volume: 75, Issue: 4, page 351-374
  • ISSN: 0065-1036

How to cite

top

S. Kanemitsu, and M. Yoshimoto. "Farey series and the Riemann hypothesis." Acta Arithmetica 75.4 (1996): 351-374. <http://eudml.org/doc/206882>.

@article{S1996,
author = {S. Kanemitsu, M. Yoshimoto},
journal = {Acta Arithmetica},
keywords = {Farey series; Riemann hypothesis; distribution of the Farey fractions; Kubert functions},
language = {eng},
number = {4},
pages = {351-374},
title = {Farey series and the Riemann hypothesis},
url = {http://eudml.org/doc/206882},
volume = {75},
year = {1996},
}

TY - JOUR
AU - S. Kanemitsu
AU - M. Yoshimoto
TI - Farey series and the Riemann hypothesis
JO - Acta Arithmetica
PY - 1996
VL - 75
IS - 4
SP - 351
EP - 374
LA - eng
KW - Farey series; Riemann hypothesis; distribution of the Farey fractions; Kubert functions
UR - http://eudml.org/doc/206882
ER -

References

top
  1. [1] P. Codecà, Alcune proprietà della discrepanza locale delle sequenze di Farey, Atti Accad. Sci. Istit. Bologna 13 (1981), 163-173. 
  2. [2] P. Codecà and A. Perelli, On the uniform distribution (mod 1) of the Farey fractions and l p spaces, Math. Ann. 279 (1988), 413-422. Zbl0606.10041
  3. [3] J. Franel, Les suites de Farey et les problèmes des nombres premiers, Nachr. Ges. Wiss. Göttingen Math.-Phys. Kl. 1924, 198-201. 
  4. [4] A. Fujii, A remark on the Riemann hypothesis, Comment. Math. Univ. St. Paul. 29 (1980), 195-201. Zbl0451.10025
  5. [5] A. Fujii, Some explicit formulas in number theory, Proc. Japan Acad. Ser. A Math. Sci. 57 (1981), 326-330. Zbl0492.10034
  6. [6] M. N. Huxley, The distribution of Farey points, I , Acta Arith. 18 (1971), 281-287. Zbl0224.10036
  7. [7] M. Ishibashi and S. Kanemitsu, Fractional part sums and divisor functions I, in: Number Theory and Combinatorics, J. Akiyama et al . (eds.), World Sci., 1985, 119-193. Zbl0601.10032
  8. [8] T. Kano, The Riemann Hypothesis, Nihonhyôronsha, 1990 (in Japanese). 
  9. [9] J. Kopriva, On a relation of the Farey series to the Riemann hypothesis on the zeros of the ζ function, Časopis Pěst. Mat. 78 (1953), 49-55 (in Czech). Zbl0059.03801
  10. [10] J. Kopriva, Contribution to the relation of the Farey series to the Riemann hypothesis, Časopis Pěst. Mat. 79 (1954), 77-82 (in Czech). Zbl0059.03802
  11. [11] E. Landau, Bemerkungen zu vorstehenden Abhandlung von Herrn Franel, Nachr. Ges. Wiss. Göttingen Math.-Phys. Kl. 1924, 202-206; Collected Works, Vol. 8, Thales Verlag. Zbl50.0119.02
  12. [12] E. Landau, Vorlesungen über Zahlentheorie, Teubner, 1927; Chelsea reprint, 1947. 
  13. [13] L. Lewin, Polylogarithms and Associated Functions, North-Holland, 1981. 
  14. [14] M. Mikolás, Farey series and their connection with the prime number problem I, Acta Sci. Math. (Szeged) 13 (1949), 93-117. Zbl0035.31402
  15. [15] M. Mikolás, Farey series and their connection with the prime number problem II, Acta Sci. Math. (Szeged) 14 (1951), 5-21. Zbl0042.27104
  16. [16] M. Mikolás and K.-I. Sato, On the asymptotic behaviour of Franel's sum and the Riemann hypothesis, Results Math. 21 (1992), 368-378. Zbl0758.11011
  17. [17] J. Milnor, On polylogarithms , Hurwitz zeta functions , and the Kubert identities, Enseign. Math. 29 (1983), 281-322. Zbl0557.10031
  18. [18] H. Niederreiter, The distribution of Farey points, Math. Ann. 201 (1973), 341-345. Zbl0248.10013
  19. [19] R. Sczech, Dedekindsummen mit elliptischen Funktionen, Invent. Math. 76 (1984), 523-551. Zbl0521.10021
  20. [20] Y. Yamamoto, Dirichlet series with periodic coefficients, in: Proc. Intern. Sympos. Algebraic Number Theory, Kyoto 1976, Japan Society for the Promotion of Science, 1977, 275-289. 
  21. [21] A. Zulauf, The distribution of Farey numbers, J. Reine Angew. Math. 289 (1977), 209-213. Zbl0336.10003

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.