Fermat quotient of cyclotomic units
Acta Arithmetica (1996)
- Volume: 76, Issue: 4, page 335-358
- ISSN: 0065-1036
Access Full Article
topHow to cite
topTsutomu Shimada. "Fermat quotient of cyclotomic units." Acta Arithmetica 76.4 (1996): 335-358. <http://eudml.org/doc/206903>.
@article{TsutomuShimada1996,
author = {Tsutomu Shimada},
journal = {Acta Arithmetica},
keywords = {cyclotomic field; Fermat quotients; principal units; dimension},
language = {eng},
number = {4},
pages = {335-358},
title = {Fermat quotient of cyclotomic units},
url = {http://eudml.org/doc/206903},
volume = {76},
year = {1996},
}
TY - JOUR
AU - Tsutomu Shimada
TI - Fermat quotient of cyclotomic units
JO - Acta Arithmetica
PY - 1996
VL - 76
IS - 4
SP - 335
EP - 358
LA - eng
KW - cyclotomic field; Fermat quotients; principal units; dimension
UR - http://eudml.org/doc/206903
ER -
References
top- [1] L. Carlitz, A generalization of Maillet's determinant and a bound for the first factor of the class number, Proc. Amer. Math. Soc. 12 (1961), 256-261. Zbl0131.03602
- [2] H. W. Leopoldt, Über Fermatquotienten von Kreiseinheiten und Klassenzahlformeln modulo p, Rend. Circ. Mat. Palermo (2) 9 (1960), 39-50.
- [3] C. Levesque, -independent systems of units, Proc. Japan Acad. Ser. A 68 (1992), 239-241.
- [4] J. W. Sands, Kummer's and Iwasawa's version of Leopoldt's conjecture, Canad. Math. Bull. 31 (1988), 338-346. Zbl0614.12002
- [5] K. Tateyama, Maillet's determinant, Sci. Papers College Gen. Edu. Univ. Tokyo 32 (1982), 97-100. Zbl0508.12006
- [6] L. C. Washington, Introduction to Cyclotomic Fields, Springer, New York, 1982 Zbl0484.12001
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.