The number of irreducible factors of a polynomial, II
Christopher G. Pinner; Jeffrey D. Vaaler
Acta Arithmetica (1996)
- Volume: 78, Issue: 2, page 125-142
- ISSN: 0065-1036
Access Full Article
topHow to cite
topChristopher G. Pinner, and Jeffrey D. Vaaler. "The number of irreducible factors of a polynomial, II." Acta Arithmetica 78.2 (1996): 125-142. <http://eudml.org/doc/206937>.
@article{ChristopherG1996,
author = {Christopher G. Pinner, Jeffrey D. Vaaler},
journal = {Acta Arithmetica},
keywords = {polynomial over an algebraic number field; irreducible cyclotomic factors},
language = {eng},
number = {2},
pages = {125-142},
title = {The number of irreducible factors of a polynomial, II},
url = {http://eudml.org/doc/206937},
volume = {78},
year = {1996},
}
TY - JOUR
AU - Christopher G. Pinner
AU - Jeffrey D. Vaaler
TI - The number of irreducible factors of a polynomial, II
JO - Acta Arithmetica
PY - 1996
VL - 78
IS - 2
SP - 125
EP - 142
LA - eng
KW - polynomial over an algebraic number field; irreducible cyclotomic factors
UR - http://eudml.org/doc/206937
ER -
References
top- [1] E. Dobrowolski, On a question of Lehmer and the number of irreducible factors of a polynomial, Acta Arith. 34 (1979), 391-401. Zbl0416.12001
- [2] G. Hajós, Solution to problem 41, Mat. Lapok 4 (1953), 40-41 (in Hungarian).
- [3] H. B. Mann, On linear relations between roots of unity, Mathematika 12 (1965), 107-117 Zbl0138.03102
- [4] H. L. Montgomery and A. Schinzel, Some arithmetic properties of polynomials in several variables, in: Transcendence Theory: Advances and Applications, Academic Press, 1977, 195-203.
- [5] C. G. Pinner and J. D. Vaaler, The number of irreducible factors of a polynomial, I, Trans. Amer. Math. Soc. 339 (1993), 809-834. Zbl0787.11045
- [6] A. Schinzel, On the number of irreducible factors of a polynomial, II, Ann. Polon. Math. 42 (1983), 309-320. Zbl0531.12001
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.