On the greatest prime factor of (ab + 1) (ac + 1) (bc + 1)

C. L. Stewart; R. Tijdeman

Acta Arithmetica (1997)

  • Volume: 79, Issue: 1, page 93-101
  • ISSN: 0065-1036

How to cite

top

C. L. Stewart, and R. Tijdeman. "On the greatest prime factor of (ab + 1) (ac + 1) (bc + 1)." Acta Arithmetica 79.1 (1997): 93-101. <http://eudml.org/doc/206969>.

@article{C1997,
author = {C. L. Stewart, R. Tijdeman},
journal = {Acta Arithmetica},
keywords = {greatest prime factor},
language = {eng},
number = {1},
pages = {93-101},
title = {On the greatest prime factor of (ab + 1) (ac + 1) (bc + 1)},
url = {http://eudml.org/doc/206969},
volume = {79},
year = {1997},
}

TY - JOUR
AU - C. L. Stewart
AU - R. Tijdeman
TI - On the greatest prime factor of (ab + 1) (ac + 1) (bc + 1)
JO - Acta Arithmetica
PY - 1997
VL - 79
IS - 1
SP - 93
EP - 101
LA - eng
KW - greatest prime factor
UR - http://eudml.org/doc/206969
ER -

References

top
  1. [1] J.-H. Evertse, On sums of S-units and linear recurrences, Compositio Math. 53 (1984), 225-244. Zbl0547.10008
  2. [2] K. Győry, personal communication. 
  3. [3] K. Győry, A. Sárközy and C. L. Stewart, On the number of prime factors of integers of the form ab + 1, Acta Arith. 74 (1996), 365-385. Zbl0857.11047
  4. [4] A. J. van der Poorten and H. P. Schlickewei, The growth conditions for recurrence sequences, Macquarie Univ. Math. Rep. 82-0041, North Ryde, Australia, 1982. 
  5. [5] A. J. van der Poorten and H. P. Schlickewei, Additive relations in fields, J. Austral. Math. Soc. (A) 51 (1991), 154-170. Zbl0747.11017
  6. [6] H. P. Schlickewei, The p-adic Thue-Siegel-Roth-Schmidt Theorem, Arch. Math. (Basel) 29 (1977), 267-270. Zbl0365.10026
  7. [7] M. Waldschmidt, Minorations de combinaisons linéaires de logarithmes de nombres algébriques, Canad. J. Math. 45 (1993), 176-224. 

NotesEmbed ?

top

You must be logged in to post comments.