Hypergeometric series and the Riemann zeta function
Acta Arithmetica (1997)
- Volume: 82, Issue: 2, page 103-118
- ISSN: 0065-1036
Access Full Article
topHow to cite
topWenchang Chu. "Hypergeometric series and the Riemann zeta function." Acta Arithmetica 82.2 (1997): 103-118. <http://eudml.org/doc/207083>.
@article{WenchangChu1997,
author = {Wenchang Chu},
journal = {Acta Arithmetica},
keywords = {the Riemann zeta function; the harmonic numbers; hypergeometric series; the gamma function; symmetric functions; infinite series identities; Riemann zeta-function},
language = {eng},
number = {2},
pages = {103-118},
title = {Hypergeometric series and the Riemann zeta function},
url = {http://eudml.org/doc/207083},
volume = {82},
year = {1997},
}
TY - JOUR
AU - Wenchang Chu
TI - Hypergeometric series and the Riemann zeta function
JO - Acta Arithmetica
PY - 1997
VL - 82
IS - 2
SP - 103
EP - 118
LA - eng
KW - the Riemann zeta function; the harmonic numbers; hypergeometric series; the gamma function; symmetric functions; infinite series identities; Riemann zeta-function
UR - http://eudml.org/doc/207083
ER -
References
top- [1] B. C. Berndt, Ramanujan's Notebooks, Part I, Springer, New York, 1985. Zbl0555.10001
- [2] D. Borwein and J. M. Borwein, On an intriguing integral and some series related to ζ(4), Proc. Amer. Math. Soc. 123 (1995), 1191-1198. Zbl0840.11036
- [3] W. Chu, Inversion techniques and combinatorial identities: A quick introduction to hypergeometric evaluations, in: Runs and Patterns in Probability: Selected Papers, A. P. Godbole and S. G. Papastavridis (eds.), Math. Appl. 283, Kluwer, Dordrecht, 1994, 31-57. Zbl0830.05006
- [4] P. J. De Doelder, On some series containing ψ(x)-ψ(y) and (ψ(x)-ψ(y))² for certain values of x and y, J. Comput. Appl. Math. 37 (1991), 125-141. Zbl0782.33001
- [5] Y. L. Luke, The Special Functions and Their Approximations, Academic Press, London, 1969. Zbl0193.01701
- [6] I. G. Macdonald, Symmetric Functions and Hall Polynomials, Oxford Univ. Press, London, 1979. Zbl0487.20007
- [7] L. J. Slater, Generalized Hypergeometric Functions, Cambridge Univ. Press, Cambridge, 1966. Zbl0135.28101
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.