Hypergeometric series and the Riemann zeta function

Wenchang Chu

Acta Arithmetica (1997)

  • Volume: 82, Issue: 2, page 103-118
  • ISSN: 0065-1036

How to cite

top

Wenchang Chu. "Hypergeometric series and the Riemann zeta function." Acta Arithmetica 82.2 (1997): 103-118. <http://eudml.org/doc/207083>.

@article{WenchangChu1997,
author = {Wenchang Chu},
journal = {Acta Arithmetica},
keywords = {the Riemann zeta function; the harmonic numbers; hypergeometric series; the gamma function; symmetric functions; infinite series identities; Riemann zeta-function},
language = {eng},
number = {2},
pages = {103-118},
title = {Hypergeometric series and the Riemann zeta function},
url = {http://eudml.org/doc/207083},
volume = {82},
year = {1997},
}

TY - JOUR
AU - Wenchang Chu
TI - Hypergeometric series and the Riemann zeta function
JO - Acta Arithmetica
PY - 1997
VL - 82
IS - 2
SP - 103
EP - 118
LA - eng
KW - the Riemann zeta function; the harmonic numbers; hypergeometric series; the gamma function; symmetric functions; infinite series identities; Riemann zeta-function
UR - http://eudml.org/doc/207083
ER -

References

top
  1. [1] B. C. Berndt, Ramanujan's Notebooks, Part I, Springer, New York, 1985. Zbl0555.10001
  2. [2] D. Borwein and J. M. Borwein, On an intriguing integral and some series related to ζ(4), Proc. Amer. Math. Soc. 123 (1995), 1191-1198. Zbl0840.11036
  3. [3] W. Chu, Inversion techniques and combinatorial identities: A quick introduction to hypergeometric evaluations, in: Runs and Patterns in Probability: Selected Papers, A. P. Godbole and S. G. Papastavridis (eds.), Math. Appl. 283, Kluwer, Dordrecht, 1994, 31-57. Zbl0830.05006
  4. [4] P. J. De Doelder, On some series containing ψ(x)-ψ(y) and (ψ(x)-ψ(y))² for certain values of x and y, J. Comput. Appl. Math. 37 (1991), 125-141. Zbl0782.33001
  5. [5] Y. L. Luke, The Special Functions and Their Approximations, Academic Press, London, 1969. Zbl0193.01701
  6. [6] I. G. Macdonald, Symmetric Functions and Hall Polynomials, Oxford Univ. Press, London, 1979. Zbl0487.20007
  7. [7] L. J. Slater, Generalized Hypergeometric Functions, Cambridge Univ. Press, Cambridge, 1966. Zbl0135.28101

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.