On double covers of the generalized alternating group d m as Galois groups over algebraic number fields

Martin Epkenhans

Acta Arithmetica (1997)

  • Volume: 82, Issue: 2, page 129-145
  • ISSN: 0065-1036

Abstract

top
Let d m b e t h e g e n e r a l i z e d a l t e r n a t i n g g r o u p . W e p r o v e t h a t a l l d o u b l e c o v e r s o f ℤd ≀ m o c c u r a s G a l o i s g r o u p s o v e r a n y a l g e b r a i c n u m b e r f i e l d . W e f u r t h e r r e a l i z e s o m e o f t h e s e d o u b l e c o v e r s a s t h e G a l o i s g r o u p s o f r e g u l a r e x t e n s i o n s o f ( T ) . I f d i s o d d a n d m > 7 , t h e n e v e r y c e n t r a l e x t e n s i o n o f ℤd ≀ m o c c u r s a s t h e G a l o i s g r o u p o f a r e g u l a r e x t e n s i o n o f ( T ) . W e f u r t h e r i m p r o v e s o m e o f o u r e a r l i e r r e s u l t s c o n c e r n i n g d o u b l e c o v e r s o f t h e g e n e r a l i z e d s y m m e t r i c g r o u p ℤd ≀ m .

How to cite

top

Martin Epkenhans. "On double covers of the generalized alternating group $ℤ_d ≀ _m$ as Galois groups over algebraic number fields." Acta Arithmetica 82.2 (1997): 129-145. <http://eudml.org/doc/207085>.

@article{MartinEpkenhans1997,
abstract = {Let $ℤ_d ≀ $m$ be the generalized alternating group. We prove that all double covers of $ℤd ≀ m$ occur as Galois groups over any algebraic number field. We further realize some of these double covers as the Galois groups of regular extensions of ℚ(T). If d is odd and m >7, then every central extension of $ℤd ≀ m$ occurs as the Galois group of a regular extension of ℚ(T). We further improve some of our earlier results concerning double covers of the generalized symmetric group $ℤd ≀ m$.$},
author = {Martin Epkenhans},
journal = {Acta Arithmetica},
keywords = {generalized alternating group; Galois group; algebraic number field; double covers; rational function field},
language = {eng},
number = {2},
pages = {129-145},
title = {On double covers of the generalized alternating group $ℤ_d ≀ _m$ as Galois groups over algebraic number fields},
url = {http://eudml.org/doc/207085},
volume = {82},
year = {1997},
}

TY - JOUR
AU - Martin Epkenhans
TI - On double covers of the generalized alternating group $ℤ_d ≀ _m$ as Galois groups over algebraic number fields
JO - Acta Arithmetica
PY - 1997
VL - 82
IS - 2
SP - 129
EP - 145
AB - Let $ℤ_d ≀ $m$ be the generalized alternating group. We prove that all double covers of $ℤd ≀ m$ occur as Galois groups over any algebraic number field. We further realize some of these double covers as the Galois groups of regular extensions of ℚ(T). If d is odd and m >7, then every central extension of $ℤd ≀ m$ occurs as the Galois group of a regular extension of ℚ(T). We further improve some of our earlier results concerning double covers of the generalized symmetric group $ℤd ≀ m$.$
LA - eng
KW - generalized alternating group; Galois group; algebraic number field; double covers; rational function field
UR - http://eudml.org/doc/207085
ER -

References

top
  1. [1] K. S. Brown, Cohomology of Groups, Grad. Texts in Math. 87, Springer, New York, 1982. 
  2. [2] M. Epkenhans, On the Galois group of f ( X d ) , Comm. Algebra, to appear. 
  3. [3] M. Epkenhans, Trace forms of trinomials, J. Algebra 155 (1993), 211-220. Zbl0777.11010
  4. [4] M. Epkenhans, On double covers of the generalized symmetric group d m as Galois groups over algebraic number fields K with μ d K , J. Algebra 163 (1994), 404-423. 
  5. [5] B. Huppert, Endliche Gruppen I, Grundlehren Math. Wiss. 137, Springer, Berlin, 1967. 
  6. [6] M. Ikeda, Zur Existenz eigentlicher galoisscher Körper beim Einbettungsproblem für galoissche Algebren, Abh. Math. Sem. Univ. Hamburg 24 (1960), 126-131. Zbl0095.02901
  7. [7] G. Karpilovsky, The Schur Multiplier, London Math. Soc. Monographs (N.S.), Clarendon Press, London, 1987. Zbl0619.20001
  8. [8] D. Kotlar, M. Schacher and J. Sonn, Central extension of symmetric groups as Galois groups, J. Algebra 124 (1989), 183-198. Zbl0679.12011
  9. [9] S. Lang, Introduction to Algebraic Geometry, Addison-Wesley, 1972. Zbl0247.14001
  10. [10] B. H. Matzat, Konstruktive Galoistheorie, Lecture Notes in Math. 1284, Springer, Berlin, 1987. 
  11. [11] J. F. Mestre, Extensions régulières de ℚ(T) de groupe de Galois à n , J. Algebra 131 (1990), 483-495. Zbl0714.11074
  12. [12] O. T. O'Meara, Introduction to Quadratic Forms, Springer, Berlin, 1963. 
  13. [13] M. Schacher and J. Sonn, Double covers of the symmetric groups as Galois groups over number fields, J. Algebra 116 (1988), 243-250. Zbl0666.12004
  14. [14] J. P. Serre, Corps Locaux, Hermann, Paris, 1968. Zbl0137.02501
  15. [15] J. P. Serre, L’invariant de Witt de la forme T r ( x 2 ) , Comment. Math. Helv. 59 (1984), 651-676. 
  16. [16] J. P. Serre, Topics in Galois Theory, 1, Res. Notes in Math. 1, Jones and Bartlett, Boston, 1992. Zbl0746.12001
  17. [17] J. Sonn, Central extensions of S n as Galois groups via trinomials, J. Algebra 125 (1989), 320-330. Zbl0697.12008
  18. [18] J. Sonn, Central extensions of S_n as Galois groups of regular extensions of ℚ(T), J. Algebra 140 (1991), 355-359. Zbl0824.12002
  19. [19] N. Vila, On central extensions of A n as Galois group over ℚ, Arch. Math. (Basel) 44 (1985), 424-437. Zbl0562.12011
  20. [20] N. Vila, On stem extensions of S n as Galois group over number fields, J. Algebra 116 (1988), 251-260. Zbl0662.12011
  21. [21] H. Völklein, Central extensions as Galois groups, J. Algebra 146 (1992), 144-152. Zbl0756.12005

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.