On double covers of the generalized alternating group d m as Galois groups over algebraic number fields

Martin Epkenhans

Acta Arithmetica (1997)

  • Volume: 82, Issue: 2, page 129-145
  • ISSN: 0065-1036

Abstract

top
Let d m b e t h e g e n e r a l i z e d a l t e r n a t i n g g r o u p . W e p r o v e t h a t a l l d o u b l e c o v e r s o f ℤd ≀ m o c c u r a s G a l o i s g r o u p s o v e r a n y a l g e b r a i c n u m b e r f i e l d . W e f u r t h e r r e a l i z e s o m e o f t h e s e d o u b l e c o v e r s a s t h e G a l o i s g r o u p s o f r e g u l a r e x t e n s i o n s o f ( T ) . I f d i s o d d a n d m > 7 , t h e n e v e r y c e n t r a l e x t e n s i o n o f ℤd ≀ m o c c u r s a s t h e G a l o i s g r o u p o f a r e g u l a r e x t e n s i o n o f ( T ) . W e f u r t h e r i m p r o v e s o m e o f o u r e a r l i e r r e s u l t s c o n c e r n i n g d o u b l e c o v e r s o f t h e g e n e r a l i z e d s y m m e t r i c g r o u p ℤd ≀ m .

How to cite

top

Martin Epkenhans. "On double covers of the generalized alternating group $ℤ_d ≀ _m$ as Galois groups over algebraic number fields." Acta Arithmetica 82.2 (1997): 129-145. <http://eudml.org/doc/207085>.

@article{MartinEpkenhans1997,
abstract = {Let $ℤ_d ≀ $m$ be the generalized alternating group. We prove that all double covers of $ℤd ≀ m$ occur as Galois groups over any algebraic number field. We further realize some of these double covers as the Galois groups of regular extensions of ℚ(T). If d is odd and m >7, then every central extension of $ℤd ≀ m$ occurs as the Galois group of a regular extension of ℚ(T). We further improve some of our earlier results concerning double covers of the generalized symmetric group $ℤd ≀ m$.$},
author = {Martin Epkenhans},
journal = {Acta Arithmetica},
keywords = {generalized alternating group; Galois group; algebraic number field; double covers; rational function field},
language = {eng},
number = {2},
pages = {129-145},
title = {On double covers of the generalized alternating group $ℤ_d ≀ _m$ as Galois groups over algebraic number fields},
url = {http://eudml.org/doc/207085},
volume = {82},
year = {1997},
}

TY - JOUR
AU - Martin Epkenhans
TI - On double covers of the generalized alternating group $ℤ_d ≀ _m$ as Galois groups over algebraic number fields
JO - Acta Arithmetica
PY - 1997
VL - 82
IS - 2
SP - 129
EP - 145
AB - Let $ℤ_d ≀ $m$ be the generalized alternating group. We prove that all double covers of $ℤd ≀ m$ occur as Galois groups over any algebraic number field. We further realize some of these double covers as the Galois groups of regular extensions of ℚ(T). If d is odd and m >7, then every central extension of $ℤd ≀ m$ occurs as the Galois group of a regular extension of ℚ(T). We further improve some of our earlier results concerning double covers of the generalized symmetric group $ℤd ≀ m$.$
LA - eng
KW - generalized alternating group; Galois group; algebraic number field; double covers; rational function field
UR - http://eudml.org/doc/207085
ER -

References

top
  1. [1] K. S. Brown, Cohomology of Groups, Grad. Texts in Math. 87, Springer, New York, 1982. 
  2. [2] M. Epkenhans, On the Galois group of f ( X d ) , Comm. Algebra, to appear. 
  3. [3] M. Epkenhans, Trace forms of trinomials, J. Algebra 155 (1993), 211-220. Zbl0777.11010
  4. [4] M. Epkenhans, On double covers of the generalized symmetric group d m as Galois groups over algebraic number fields K with μ d K , J. Algebra 163 (1994), 404-423. 
  5. [5] B. Huppert, Endliche Gruppen I, Grundlehren Math. Wiss. 137, Springer, Berlin, 1967. 
  6. [6] M. Ikeda, Zur Existenz eigentlicher galoisscher Körper beim Einbettungsproblem für galoissche Algebren, Abh. Math. Sem. Univ. Hamburg 24 (1960), 126-131. Zbl0095.02901
  7. [7] G. Karpilovsky, The Schur Multiplier, London Math. Soc. Monographs (N.S.), Clarendon Press, London, 1987. Zbl0619.20001
  8. [8] D. Kotlar, M. Schacher and J. Sonn, Central extension of symmetric groups as Galois groups, J. Algebra 124 (1989), 183-198. Zbl0679.12011
  9. [9] S. Lang, Introduction to Algebraic Geometry, Addison-Wesley, 1972. Zbl0247.14001
  10. [10] B. H. Matzat, Konstruktive Galoistheorie, Lecture Notes in Math. 1284, Springer, Berlin, 1987. 
  11. [11] J. F. Mestre, Extensions régulières de ℚ(T) de groupe de Galois à n , J. Algebra 131 (1990), 483-495. Zbl0714.11074
  12. [12] O. T. O'Meara, Introduction to Quadratic Forms, Springer, Berlin, 1963. 
  13. [13] M. Schacher and J. Sonn, Double covers of the symmetric groups as Galois groups over number fields, J. Algebra 116 (1988), 243-250. Zbl0666.12004
  14. [14] J. P. Serre, Corps Locaux, Hermann, Paris, 1968. Zbl0137.02501
  15. [15] J. P. Serre, L’invariant de Witt de la forme T r ( x 2 ) , Comment. Math. Helv. 59 (1984), 651-676. 
  16. [16] J. P. Serre, Topics in Galois Theory, 1, Res. Notes in Math. 1, Jones and Bartlett, Boston, 1992. Zbl0746.12001
  17. [17] J. Sonn, Central extensions of S n as Galois groups via trinomials, J. Algebra 125 (1989), 320-330. Zbl0697.12008
  18. [18] J. Sonn, Central extensions of S_n as Galois groups of regular extensions of ℚ(T), J. Algebra 140 (1991), 355-359. Zbl0824.12002
  19. [19] N. Vila, On central extensions of A n as Galois group over ℚ, Arch. Math. (Basel) 44 (1985), 424-437. Zbl0562.12011
  20. [20] N. Vila, On stem extensions of S n as Galois group over number fields, J. Algebra 116 (1988), 251-260. Zbl0662.12011
  21. [21] H. Völklein, Central extensions as Galois groups, J. Algebra 146 (1992), 144-152. Zbl0756.12005

NotesEmbed ?

top

You must be logged in to post comments.