A singular series average and Goldbach numbers in short intervals

A. Languasco

Acta Arithmetica (1998)

  • Volume: 83, Issue: 2, page 171-179
  • ISSN: 0065-1036

How to cite

top

A. Languasco. "A singular series average and Goldbach numbers in short intervals." Acta Arithmetica 83.2 (1998): 171-179. <http://eudml.org/doc/207113>.

@article{A1998,
author = {A. Languasco},
journal = {Acta Arithmetica},
keywords = {short intervals; Riemann hypothesis; Riemann zeta function; pair correlation function; pair correlation hypothesis; Goldbach numbers in short intervals; asymptotic formula; Hardy-Littlewood singular series; binary Goldbach problem},
language = {eng},
number = {2},
pages = {171-179},
title = {A singular series average and Goldbach numbers in short intervals},
url = {http://eudml.org/doc/207113},
volume = {83},
year = {1998},
}

TY - JOUR
AU - A. Languasco
TI - A singular series average and Goldbach numbers in short intervals
JO - Acta Arithmetica
PY - 1998
VL - 83
IS - 2
SP - 171
EP - 179
LA - eng
KW - short intervals; Riemann hypothesis; Riemann zeta function; pair correlation function; pair correlation hypothesis; Goldbach numbers in short intervals; asymptotic formula; Hardy-Littlewood singular series; binary Goldbach problem
UR - http://eudml.org/doc/207113
ER -

References

top
  1. [1] R. Baker, G. Harman and J. Pintz, The exceptional set for Goldbach's problem in short intervals, in: Proc. of Sieve Methods, Exponential Sums and Their Application in Number Theory, G. R. H. Greaves et al. (eds.), Cambridge Univ. Press, 1996, 1-54. Zbl0929.11042
  2. [2] J. B. Friedlander and D. A. Goldston, Some singular series averages and the distribution of Goldbach numbers in short intervals, Illinois J. Math. 39 (1995), 158-180. Zbl0814.11048
  3. [3] D. A. Goldston, Linnik's theorem on Goldbach numbers in short intervals, Glasgow Math. J. 32 (1990), 285-297. Zbl0719.11065
  4. [4] H. Halberstam and H.-E. Richert, Sieve Methods, Academic Press, 1974. 
  5. [5] I. Kátai, A remark on a paper of Yu. V. Linnik, Magyar Tud. Akad. Mat. Fiz. Oszt. Közl. 17 (1967), 99-100 (in Hungarian). 
  6. [6] A. Languasco, A conditional result on Goldbach numbers in short intervals, Acta Arith., this volume, 93-103. 
  7. [7] H. L. Montgomery and R. C. Vaughan, The exceptional set in Goldbach's problem, Acta Arith. 27 (1975), 353-370. Zbl0301.10043
  8. [8] K. Ramachandra, Two remarks in prime number theory, Bull. Soc. Math. France 105 (1977), 433-437. Zbl0381.10031
  9. [9] G. Tenenbaum, Introduction à la théorie analytique et probabiliste des nombres, Publ. Inst. E. Cartan 13, 1990. 
  10. [10] A. Walfisz, Weylsche Exponentialsummen in der neueren Zahlentheorie, Deutscher Verlag Wiss., 1963. Zbl0146.06003

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.