A singular series average and Goldbach numbers in short intervals
Acta Arithmetica (1998)
- Volume: 83, Issue: 2, page 171-179
- ISSN: 0065-1036
Access Full Article
topHow to cite
topReferences
top- [1] R. Baker, G. Harman and J. Pintz, The exceptional set for Goldbach's problem in short intervals, in: Proc. of Sieve Methods, Exponential Sums and Their Application in Number Theory, G. R. H. Greaves et al. (eds.), Cambridge Univ. Press, 1996, 1-54. Zbl0929.11042
- [2] J. B. Friedlander and D. A. Goldston, Some singular series averages and the distribution of Goldbach numbers in short intervals, Illinois J. Math. 39 (1995), 158-180. Zbl0814.11048
- [3] D. A. Goldston, Linnik's theorem on Goldbach numbers in short intervals, Glasgow Math. J. 32 (1990), 285-297. Zbl0719.11065
- [4] H. Halberstam and H.-E. Richert, Sieve Methods, Academic Press, 1974.
- [5] I. Kátai, A remark on a paper of Yu. V. Linnik, Magyar Tud. Akad. Mat. Fiz. Oszt. Közl. 17 (1967), 99-100 (in Hungarian).
- [6] A. Languasco, A conditional result on Goldbach numbers in short intervals, Acta Arith., this volume, 93-103.
- [7] H. L. Montgomery and R. C. Vaughan, The exceptional set in Goldbach's problem, Acta Arith. 27 (1975), 353-370. Zbl0301.10043
- [8] K. Ramachandra, Two remarks in prime number theory, Bull. Soc. Math. France 105 (1977), 433-437. Zbl0381.10031
- [9] G. Tenenbaum, Introduction à la théorie analytique et probabiliste des nombres, Publ. Inst. E. Cartan 13, 1990.
- [10] A. Walfisz, Weylsche Exponentialsummen in der neueren Zahlentheorie, Deutscher Verlag Wiss., 1963. Zbl0146.06003