Determination of elliptic curves with everywhere good reduction over ℚ(√37)

Takaaki Kagawa

Acta Arithmetica (1998)

  • Volume: 83, Issue: 3, page 253-269
  • ISSN: 0065-1036

How to cite


Takaaki Kagawa. "Determination of elliptic curves with everywhere good reduction over ℚ(√37)." Acta Arithmetica 83.3 (1998): 253-269. <>.

author = {Takaaki Kagawa},
journal = {Acta Arithmetica},
keywords = {elliptic curves; everywhere good reduction; real quadratic fields; diophantine equations},
language = {eng},
number = {3},
pages = {253-269},
title = {Determination of elliptic curves with everywhere good reduction over ℚ(√37)},
url = {},
volume = {83},
year = {1998},

AU - Takaaki Kagawa
TI - Determination of elliptic curves with everywhere good reduction over ℚ(√37)
JO - Acta Arithmetica
PY - 1998
VL - 83
IS - 3
SP - 253
EP - 269
LA - eng
KW - elliptic curves; everywhere good reduction; real quadratic fields; diophantine equations
UR -
ER -


  1. [BW] A. Baker and G. Wüstholz, Logarithmic forms and group varieties, J. Reine Angew. Math. 442 (1993), 19-62. Zbl0788.11026
  2. [BK] A. Brumer and K. Kramer, The rank of elliptic curves, Duke Math. J. 44 (1977), 715-743. Zbl0376.14011
  3. [Ca] W. Casselman, On abelian varieties with many endomorphisms, and a conjecture of Shimura's, Invent. Math. 12 (1971), 225-236. Zbl0213.47303
  4. [CW] J. Coates and A. Wiles, On the conjecture of Birch and Swinnerton-Dyer, Invent. Math. 39 (1977), 223-251. Zbl0359.14009
  5. [Co] S. Comalada, Elliptic curves with trivial conductor over quadratic fields, Pacific J. Math. 144 (1990), 233-258. Zbl0732.11028
  6. [DR] P. Deligne et M. Rapoport, Les schémas de modules des courbes elliptiques, in: Modular Functions of One Variable II, Lecture Notes in Math. 349, Springer, 1973, 143-316. 
  7. [Fr] R. Fricke, Die elliptischen Funktionen und ihre Anwendungen, Teubner, Leipzig, 1922. Zbl48.0432.01
  8. [Ha1] Y. Hasegawa, ℚ-curves over quadratic fields, Manuscripta Math., to appear. 
  9. [Ha2] Y. Hasegawa, Table of cuspforms on Γ₁(N) with real quadratic characters, unpublished. 
  10. [HHM] Y. Hasegawa, K. Hashimoto and F. Momose, Modular conjecture for ℚ-curves and QM-curves, preprint. Zbl1110.11302
  11. [He] E. Hecke, Lectures on the Theory of Algebraic Numbers, Grad. Texts in Math. 77, Springer, 1981. 
  12. [Is] H. Ishii, The non-existence of elliptic curves with everywhere good reduction over certain quadratic fields, Japan. J. Math. 12 (1986), 45-52. Zbl0613.14021
  13. [KT] T. Kagawa and N. Terai, Squares in Lucas sequences and some Diophantine equations, Manuscripta Math., to appear. Zbl0911.11012
  14. [KM] N. Katz and B. Mazur, The Arithmetic Moduli of Elliptic Curves, Princeton Univ. Press, 1985. Zbl0576.14026
  15. [Ki1] M. Kida, On a characterization of Shimura's elliptic curve over ℚ(√37), Acta Arith. 77 (1996), 157-171. 
  16. [Ki2] M. Kida, private communication. 
  17. [KK] M. Kida and T. Kagawa, Nonexistence of elliptic curves with good reduction everywhere over real quadratic fields, J. Number Theory 66 (1997), 201-210. Zbl0895.11023
  18. [Kr] A. Kraus, Quelques remarques à propos des invariants c₄,c₆ et Δ d'une courbe elliptique, Acta Arith. 54 (1989), 75-80. 
  19. [MSZ] H. H. Müller, H. Ströher and H. G. Zimmer, Torsion groups of elliptic curves with integral j-invariant over quadratic fields, J. Reine Angew. Math. 397 (1989), 100-161. Zbl0662.14020
  20. [Pi1] R. G. E. Pinch, Elliptic curves over number fields, Ph.D. thesis, Oxford, 1982. 
  21. [Pi2] R. G. E. Pinch, Elliptic curves with good reduction away from 3, Math. Proc. Cambridge Philos. Soc. 101 (1987), 451-459. Zbl0632.14030
  22. [Ro] M. I. Rosen, Some confirming instances of the Birch-Swinnerton-Dyer conjecture over biquadratic fields, in: Number Theory, R. A. Mollin (ed.), Walter de Gruyter, 1990, 493-499. Zbl0754.14013
  23. [Ru] K. Rubin, The ``main conjectures'' of Iwasawa theory for imaginary quadratic fields, Invent. Math. 103 (1991), 25-68. Zbl0737.11030
  24. [Sa] P. Satgé, Groupes de Selmer et corps cubiques, J. Number Theory 23 (1986), 294-317. Zbl0601.14027
  25. [Ser] J.-P. Serre, Propriétés galoisiennes des points d'ordre fini des courbes elliptiques, Invent. Math. 15 (1972), 259-331. 
  26. [Set] B. Setzer, Elliptic curves with good reduction everywhere over quadratic fields and having rational j-invariant, Illinois J. Math. 25 (1981), 233-245. Zbl0471.14019
  27. [Shim] G. Shimura, Introduction to the Arithmetic Theory of Automorphic Functions, Publ. Math. Soc. Japan 11, Iwanami Shoten and Princeton Univ. Press, 1971. Zbl0221.10029
  28. [Shio] K. Shiota, On the explicit models of Shimura's elliptic curves, J. Math. Soc. Japan 38 (1986), 649-659. Zbl0608.14023
  29. [Sil] J. H. Silverman, The Arithmetic of Elliptic Curves, Grad. Texts in Math. 106, Springer, 1986. 
  30. [Str] R. J. Stroeker, Reduction of elliptic curves over imaginary quadratic number fields, Pacific J. Math. 108 (1983), 451-463. Zbl0491.14024
  31. [Ta] J. Tate, Algorithm for determining the type of a singular fibre in an elliptic pencil, in: Modular Functions of One Variable IV, Lecture Notes in Math. 476, Springer, 1975, 33-52. 
  32. [TdW] N. Tzanakis and B. M. M. de Weger, On the practical solution of the Thue equation, J. Number Theory 31 (1989), 99-132. Zbl0657.10014
  33. [Um] A. Umegaki, A construction of everywhere good ℚ-curves with p-isogeny, preprint. 
  34. [dW1] B. M. M. de Weger, A hyperelliptic diophantine equation related to imaginary quadratic number fields with class number 2, J. Reine Angew. Math. 427 (1992), 137-156; Correction: J. Reine Angew. Math. 441 (1993), 217-218. Zbl0738.11032
  35. [dW2] B. M. M. de Weger, A Thue equation with quadratic integers as variables, Math. Comp. 64 (1995), 855-861. Zbl0835.11012

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.