On an equation of Goormaghtigh

Yu. V. Nesterenko; T. N. Shorey

Acta Arithmetica (1998)

  • Volume: 83, Issue: 4, page 381-389
  • ISSN: 0065-1036

How to cite

top

Yu. V. Nesterenko, and T. N. Shorey. "On an equation of Goormaghtigh." Acta Arithmetica 83.4 (1998): 381-389. <http://eudml.org/doc/207129>.

@article{Yu1998,
author = {Yu. V. Nesterenko, T. N. Shorey},
journal = {Acta Arithmetica},
keywords = {higher degree diophantine equations; equation of Goormaghtigh; linear forms in logarithms},
language = {eng},
number = {4},
pages = {381-389},
title = {On an equation of Goormaghtigh},
url = {http://eudml.org/doc/207129},
volume = {83},
year = {1998},
}

TY - JOUR
AU - Yu. V. Nesterenko
AU - T. N. Shorey
TI - On an equation of Goormaghtigh
JO - Acta Arithmetica
PY - 1998
VL - 83
IS - 4
SP - 381
EP - 389
LA - eng
KW - higher degree diophantine equations; equation of Goormaghtigh; linear forms in logarithms
UR - http://eudml.org/doc/207129
ER -

References

top
  1. [1] A. Baker and G. Wüstholz, Logarithmic forms and group varieties, J. Reine Angew. Math. 442 (1993), 19-62. Zbl0788.11026
  2. [2] R. Balasubramanian and T. N. Shorey, On the equation a ( x m - 1 ) / ( x - 1 ) = b ( y n - 1 ) / ( y - 1 ) , Math. Scand. 46 (1980), 177-182. Zbl0425.10020
  3. [3] H. Davenport, D. J. Lewis and A. Schinzel, Equations of the form f(x) = g(y), Quart. J. Math. Oxford Ser. (2) 12 (1961), 304-312. Zbl0121.28403
  4. [4] R. Goormaghtigh, L'Intermédiaire des Mathématiciens 24 (1917), 88. 
  5. [5] T. Nagell, The diophantine equation x ² + 7 = 2 n , Ark. Mat. 4 (1961), 185-187. Zbl0103.03001
  6. [6] S. Ramanujan, Question 464, J. Indian Math. Soc. 5 (1913), Collected Papers, Cambridge Univ. Press, 1927, 327. 
  7. [7] C. Runge, Ueber ganzzahlige Los̈ungen von Gleichungen zwischen zwei Veränderlichen, J. Reine Angew. Math. 100 (1887), 425-435. 
  8. [8] N. Saradha and T. N. Shorey, On the equation (x+1)...(x+k) = (y+1)...(y+mk), Indag. Math. (N.S.) 3 (1992), 79-90. Zbl0757.11011
  9. [9] T. N. Shorey, On the equation a ( x m - 1 ) / ( x - 1 ) = b ( y n - 1 ) / ( y - 1 ) (II), Hardy-Ramanujan J. 7 (1984), 1-10. Zbl0575.10011
  10. [10] T. N. Shorey, Integers with identical digits, Acta Arith. 53 (1989), 187-205. Zbl0693.10008
  11. [11] T. N. Shorey and R. Tijdeman, Exponential Diophantine Equations, Cambridge Tracts in Math. 87, Cambridge Univ. Press, 1986. Zbl0606.10011
  12. [12] C. L. Siegel, Ueber einige Anwendungen diophantischer Approximationen, Abh. Preuss. Akad. Wiss. Phys.-Math. Kl. 1 (1929), 70 pp. Zbl56.0180.05

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.