On an equation of Goormaghtigh
Yu. V. Nesterenko; T. N. Shorey
Acta Arithmetica (1998)
- Volume: 83, Issue: 4, page 381-389
- ISSN: 0065-1036
Access Full Article
topHow to cite
topReferences
top- [1] A. Baker and G. Wüstholz, Logarithmic forms and group varieties, J. Reine Angew. Math. 442 (1993), 19-62. Zbl0788.11026
- [2] R. Balasubramanian and T. N. Shorey, On the equation , Math. Scand. 46 (1980), 177-182. Zbl0425.10020
- [3] H. Davenport, D. J. Lewis and A. Schinzel, Equations of the form f(x) = g(y), Quart. J. Math. Oxford Ser. (2) 12 (1961), 304-312. Zbl0121.28403
- [4] R. Goormaghtigh, L'Intermédiaire des Mathématiciens 24 (1917), 88.
- [5] T. Nagell, The diophantine equation , Ark. Mat. 4 (1961), 185-187. Zbl0103.03001
- [6] S. Ramanujan, Question 464, J. Indian Math. Soc. 5 (1913), Collected Papers, Cambridge Univ. Press, 1927, 327.
- [7] C. Runge, Ueber ganzzahlige Los̈ungen von Gleichungen zwischen zwei Veränderlichen, J. Reine Angew. Math. 100 (1887), 425-435.
- [8] N. Saradha and T. N. Shorey, On the equation (x+1)...(x+k) = (y+1)...(y+mk), Indag. Math. (N.S.) 3 (1992), 79-90. Zbl0757.11011
- [9] T. N. Shorey, On the equation (II), Hardy-Ramanujan J. 7 (1984), 1-10. Zbl0575.10011
- [10] T. N. Shorey, Integers with identical digits, Acta Arith. 53 (1989), 187-205. Zbl0693.10008
- [11] T. N. Shorey and R. Tijdeman, Exponential Diophantine Equations, Cambridge Tracts in Math. 87, Cambridge Univ. Press, 1986. Zbl0606.10011
- [12] C. L. Siegel, Ueber einige Anwendungen diophantischer Approximationen, Abh. Preuss. Akad. Wiss. Phys.-Math. Kl. 1 (1929), 70 pp. Zbl56.0180.05