Sequences with bounded l.c.m. of each pair of terms
Acta Arithmetica (1998)
- Volume: 84, Issue: 1, page 71-95
- ISSN: 0065-1036
Access Full Article
topHow to cite
topYong-Gao Chen. "Sequences with bounded l.c.m. of each pair of terms." Acta Arithmetica 84.1 (1998): 71-95. <http://eudml.org/doc/207136>.
@article{Yong1998,
author = {Yong-Gao Chen},
journal = {Acta Arithmetica},
keywords = {Erdős’ problem; least common multiple; subset; cardinality; upper bound},
language = {eng},
number = {1},
pages = {71-95},
title = {Sequences with bounded l.c.m. of each pair of terms},
url = {http://eudml.org/doc/207136},
volume = {84},
year = {1998},
}
TY - JOUR
AU - Yong-Gao Chen
TI - Sequences with bounded l.c.m. of each pair of terms
JO - Acta Arithmetica
PY - 1998
VL - 84
IS - 1
SP - 71
EP - 95
LA - eng
KW - Erdős’ problem; least common multiple; subset; cardinality; upper bound
UR - http://eudml.org/doc/207136
ER -
References
top- [1] S. L. G. Choi, The largest subset in [1,n] whose integers have pairwise l.c.m. not exceeding n, Mathematika 19 (1972), 221-230. Zbl0251.10040
- [2] S. L. G. Choi, The largest subset in [1,n] whose integers have pairwise l.c.m. not exceeding n, II, Acta Arith. 29 (1976), 105-111. Zbl0286.10030
- [3] P. Erdős, Problem, Mat. Lapok 2 (1951), 233.
- [4] P. Erdős, Extremal problems in number theory, in: Theory of Numbers, Proc. Sympos. Pure Math. 8, Amer. Math. Soc., 1965, 181-189.
- [5] R. K. Guy, Unsolved Problems in Number Theory, 2nd ed., Springer, New York, 1994. Zbl0805.11001
- [6] H. Halberstam and H. E. Richert, Sieve Methods, Academic Press, London, 1974. Zbl0298.10026
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.