Combinatoire des codages de rotations

Gilles Didier

Acta Arithmetica (1998)

  • Volume: 85, Issue: 2, page 157-177
  • ISSN: 0065-1036

How to cite

top

Gilles Didier. "Combinatoire des codages de rotations." Acta Arithmetica 85.2 (1998): 157-177. <http://eudml.org/doc/207160>.

@article{GillesDidier1998,
author = {Gilles Didier},
journal = {Acta Arithmetica},
keywords = {symbolic dynamics; codings of rotations; Sturmian sequences},
language = {fre},
number = {2},
pages = {157-177},
title = {Combinatoire des codages de rotations},
url = {http://eudml.org/doc/207160},
volume = {85},
year = {1998},
}

TY - JOUR
AU - Gilles Didier
TI - Combinatoire des codages de rotations
JO - Acta Arithmetica
PY - 1998
VL - 85
IS - 2
SP - 157
EP - 177
LA - fre
KW - symbolic dynamics; codings of rotations; Sturmian sequences
UR - http://eudml.org/doc/207160
ER -

References

top
  1. [1] P. Alessandri, Codages de rotations et basses complexités, Thèse de Doctorat, Université d'Aix-Marseille II, 1996. 
  2. [2] P. Alessandri and V. Berthé, Three distances theorem, prépublication. Zbl0997.11051
  3. [3] J.-P. Allouche, Sur la complexité des suites infinies, Bull. Belg. Math. Soc. Simon Stevin 1 (1994), 133-143. 
  4. [4] P. Arnoux et G. Rauzy, Représentation géométrique de suites de complexité 2n+1, Bull. Soc. Math. France 119 (1991), 199-215. Zbl0789.28011
  5. [5] J. Berstel, Recent results in sturmian words, dans: Developments in Language Theory (Magdeburg, 1995), World Sci., 1996, 13-24. Zbl1096.68689
  6. [6] E. Coven and G. A. Hedlund, Sequences with minimal block growth, Math. Systems Theory 7 (1973), 138-153. Zbl0256.54028
  7. [7] P. Hubert, Propriétés combinatoires des suites définies par le billard dans les triangles pavants, Theoret. Comput. Sci. 164 (1996), 165-183. 
  8. [8] P. Hubert, Suites équilibrées, prépublication. 
  9. [9] M. Morse and G. A. Hedlund, Symbolic dynamics, Amer. J. Math. 60 (1938), 815-866. Zbl0019.33502
  10. [10] M. Morse and G. A. Hedlund, Symbolic dynamics II. Sturmian trajectories, Amer. J. Math. 62 (1940), 1-42. Zbl0022.34003
  11. [11] G. Rote, Sequences with subword complexity 2n, J. Number Theory 46 (1994), 196-213. Zbl0804.11023

NotesEmbed ?

top

You must be logged in to post comments.