On sums of two cubes: an Ω₊-estimate for the error term

M. Kühleitner; W. G. Nowak; J. Schoissengeier; T. D. Wooley

Acta Arithmetica (1998)

  • Volume: 85, Issue: 2, page 179-195
  • ISSN: 0065-1036

Abstract

top
The arithmetic function r k ( n ) counts the number of ways to write a natural number n as a sum of two kth powers (k ≥ 2 fixed). The investigation of the asymptotic behaviour of the Dirichlet summatory function of r k ( n ) leads in a natural way to a certain error term P k ( t ) which is known to be O ( t 1 / 4 ) in mean-square. In this article it is proved that P ( t ) = Ω ( t 1 / 4 ( l o g l o g t ) 1 / 4 ) as t → ∞. Furthermore, it is shown that a similar result would be true for every fixed k > 3 provided that a certain set of algebraic numbers contains a sufficiently large subset which is linearly independent over ℚ.

How to cite

top

M. Kühleitner, et al. "On sums of two cubes: an Ω₊-estimate for the error term." Acta Arithmetica 85.2 (1998): 179-195. <http://eudml.org/doc/207161>.

@article{M1998,
abstract = {The arithmetic function $r_k(n)$ counts the number of ways to write a natural number n as a sum of two kth powers (k ≥ 2 fixed). The investigation of the asymptotic behaviour of the Dirichlet summatory function of $r_k(n)$ leads in a natural way to a certain error term $P_\{_k\}(t)$ which is known to be $O(t^\{1/4\})$ in mean-square. In this article it is proved that $P_\{₃\}(t) = Ω₊(t^\{1/4\}(loglog t)^\{1/4\})$ as t → ∞. Furthermore, it is shown that a similar result would be true for every fixed k > 3 provided that a certain set of algebraic numbers contains a sufficiently large subset which is linearly independent over ℚ.},
author = {M. Kühleitner, W. G. Nowak, J. Schoissengeier, T. D. Wooley},
journal = {Acta Arithmetica},
keywords = {sums of two cubes; estimate for the error term; asymptotical formula; summatory function},
language = {eng},
number = {2},
pages = {179-195},
title = {On sums of two cubes: an Ω₊-estimate for the error term},
url = {http://eudml.org/doc/207161},
volume = {85},
year = {1998},
}

TY - JOUR
AU - M. Kühleitner
AU - W. G. Nowak
AU - J. Schoissengeier
AU - T. D. Wooley
TI - On sums of two cubes: an Ω₊-estimate for the error term
JO - Acta Arithmetica
PY - 1998
VL - 85
IS - 2
SP - 179
EP - 195
AB - The arithmetic function $r_k(n)$ counts the number of ways to write a natural number n as a sum of two kth powers (k ≥ 2 fixed). The investigation of the asymptotic behaviour of the Dirichlet summatory function of $r_k(n)$ leads in a natural way to a certain error term $P_{_k}(t)$ which is known to be $O(t^{1/4})$ in mean-square. In this article it is proved that $P_{₃}(t) = Ω₊(t^{1/4}(loglog t)^{1/4})$ as t → ∞. Furthermore, it is shown that a similar result would be true for every fixed k > 3 provided that a certain set of algebraic numbers contains a sufficiently large subset which is linearly independent over ℚ.
LA - eng
KW - sums of two cubes; estimate for the error term; asymptotical formula; summatory function
UR - http://eudml.org/doc/207161
ER -

References

top
  1. [1] N. Bourbaki, Algebra II, Springer, Berlin, 1990. Zbl0719.12001
  2. [2] K. Corrádi and I. Kátai, A comment on K. S. Gangadharan's paper 'Two classical lattice point problems', Magyar Tud. Akad. Mat. Fiz. Oszt. Közl. 17 (1967), 89-97 (in Hungarian). 
  3. [3] M. Drmota and R. F. Tichy, Sequences, Discrepancies and Applications, Lecture Notes in Math. 1651, Springer, Berlin, 1997. 
  4. [4] J. L. Hafner, New omega theorems for two classical lattice point problems, Invent. Math. 63 (1981), 181-186. Zbl0458.10031
  5. [5] J. L. Hafner, On the average order of a class of arithmetical functions, J. Number Theory 15 (1982), 36-76. Zbl0495.10027
  6. [6] K. S. Gangadharan, Two classical lattice point problems, Proc. Cambridge Philos. Soc. 57 (1961), 699-721. Zbl0100.03901
  7. [7] G. H. Hardy, On the expression of a number as the sum of two squares, Quart. J. Math. 46 (1915), 263-283. Zbl45.1253.01
  8. [8] G. H. Hardy, On Dirichlet's divisor problem, Proc. London Math. Soc. (2) 15 (1916), 1-25. Zbl46.0260.01
  9. [9] D. R. Heath-Brown, The density of rational points on cubic surfaces, Acta Arith. 79 (1997), 17-30. 
  10. [10] E. Hlawka, J. Schoißengeier and R. Taschner, Geometric and Analytic Number Theory, Springer, Berlin, 1991. Zbl0749.11001
  11. [11] M. N. Huxley, Exponential sums and lattice points II, Proc. London Math. Soc. 66 (1993), 279-301. Zbl0820.11060
  12. [12] M. N. Huxley, Area, lattice points, and exponential sums, London. Math. Soc. Monographs (N.S.) 13, Oxford, 1996. 
  13. [13] A. E. Ingham, On two classical lattice point problems, Proc. Cambridge Philos. Soc. 36 (1940), 131-138. Zbl0023.29802
  14. [14] I. Kátai, The number of lattice points in a circle, Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 8 (1965), 39-60. Zbl0151.04401
  15. [15] E. Krätzel, Lattice Points, Deutsch. Verlag Wiss., Berlin, 1988. 
  16. [16] G. Kuba, On sums of two k-th powers of numbers in residue classes II, Abh. Math. Sem. Univ. Hamburg 63 (1993), 87-95. Zbl0799.11037
  17. [17] W. G. Nowak, An Ω-estimate for the lattice rest of a convex planar domain, Proc. Roy. Soc. Edinburgh Sect. A 100 (1985), 295-299. Zbl0582.10033
  18. [18] W. G. Nowak, On the average order of the lattice rest of a convex planar domain, Proc. Cambridge Philos. Soc. 98 (1985), 1-4. Zbl0552.10032
  19. [19] W. G. Nowak, On sums of two k-th powers: a mean-square bound for the error term, Analysis 16 (1996), 297-304. Zbl0860.11060
  20. [20] W. G. Nowak, Sums of two k-th powers: an Omega estimate for the error term, Arch. Math. (Basel) 68 (1997), 27-35. Zbl0880.11066
  21. [21] J. D. Vaaler, Some extremal problems in Fourier analysis, Bull. Amer. Math. Soc. (2) 12 (1985), 183-216. Zbl0575.42003
  22. [22] J. G. van der Corput, Over roosterpunkten in het plate vlak, Thesis, Groningen, 1919. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.