# On the sum of a prime and the kth power of a prime

Acta Arithmetica (1998)

- Volume: 85, Issue: 2, page 99-118
- ISSN: 0065-1036

## Access Full Article

top## How to cite

topClaus Bauer. "On the sum of a prime and the kth power of a prime." Acta Arithmetica 85.2 (1998): 99-118. <http://eudml.org/doc/207162>.

@article{ClausBauer1998,

author = {Claus Bauer},

journal = {Acta Arithmetica},

keywords = {prime numbers; th powers; sum of a prime and a power of a prime; representations},

language = {eng},

number = {2},

pages = {99-118},

title = {On the sum of a prime and the kth power of a prime},

url = {http://eudml.org/doc/207162},

volume = {85},

year = {1998},

}

TY - JOUR

AU - Claus Bauer

TI - On the sum of a prime and the kth power of a prime

JO - Acta Arithmetica

PY - 1998

VL - 85

IS - 2

SP - 99

EP - 118

LA - eng

KW - prime numbers; th powers; sum of a prime and a power of a prime; representations

UR - http://eudml.org/doc/207162

ER -

## References

top- [1] P. X. Gallagher, A large sieve density estimate near σ = 1, Invent. Math. 11 (1970), 329-339. Zbl0219.10048
- [2] D. R. Heath-Brown, Prime numbers in short intervals and a generalized Vaughan's identity, Canad. J. Math. 34 (1982), 1365-1377. Zbl0478.10024
- [3] L. K. Hua, Some results in the additive prime number theory, Quart. J. Math. 9 (1938), 68-80. Zbl0018.29404
- [4] J. Y. Liu and T. Zhan, Estimation of exponential sums over primes in short intervals II, in: Analytic Number Theory, Proceedings of a Conference in Honor of Heini Halberstam, Vol. 2, Birkhäuser, 1996, 571-606. Zbl0858.11044
- [5] H. Mikawa, On the sum of a prime and a square, Tsukuba J. Math. 17 (1993), 299-310. Zbl0802.11037
- [6] A. Perelli and J. Pintz, On the exceptional set for Goldbach's problem in short intervals, J. London Math. Soc. (2) 47 (1993), 41-49. Zbl0806.11042
- [7] A. Perelli and J. Pintz, Hardy-Littlewood numbers in short intervals, J. Number Theory 54 (1995), 297-308. Zbl0851.11056
- [8] A. Perelli and A. Zaccagnini, On the sum of a prime and a k-th power, Izv. Ross. Akad. Nauk Mat. 59 (1995), no. 1, 185-200. Zbl0996.11065
- [9] B. Saffari and R. C. Vaughan, On the fractional parts of x/n and related sequences. II, Ann. Inst. Fourier (Grenoble) 27 (1977), no. 2, 1-30. Zbl0379.10023
- [10] W. Schwarz, Zur Darstellung von Zahlen durch Summen von Primzahlpotenzen. II, J. Reine Angew. Math. 206 (1961), 78-112.
- [11] E. C. Titchmarsh, The Theory of the Riemann Zeta-Function, 2nd ed., Clarendon Press, Oxford, 1986. Zbl0601.10026
- [12] A. Zaccagnini, The exceptional set for the sum of a prime and a k-th power, Mathematika 39 (1992), 400-421. Zbl0760.11026
- [13] T. Zhan and J. Y. Liu, On a theorem of Hua, Arch. Math. (Basel) 69 (1997), 375-390. Zbl0898.11038

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.