On the sum of a prime and the kth power of a prime

Claus Bauer

Acta Arithmetica (1998)

  • Volume: 85, Issue: 2, page 99-118
  • ISSN: 0065-1036

How to cite

top

Claus Bauer. "On the sum of a prime and the kth power of a prime." Acta Arithmetica 85.2 (1998): 99-118. <http://eudml.org/doc/207162>.

@article{ClausBauer1998,
author = {Claus Bauer},
journal = {Acta Arithmetica},
keywords = {prime numbers; th powers; sum of a prime and a power of a prime; representations},
language = {eng},
number = {2},
pages = {99-118},
title = {On the sum of a prime and the kth power of a prime},
url = {http://eudml.org/doc/207162},
volume = {85},
year = {1998},
}

TY - JOUR
AU - Claus Bauer
TI - On the sum of a prime and the kth power of a prime
JO - Acta Arithmetica
PY - 1998
VL - 85
IS - 2
SP - 99
EP - 118
LA - eng
KW - prime numbers; th powers; sum of a prime and a power of a prime; representations
UR - http://eudml.org/doc/207162
ER -

References

top
  1. [1] P. X. Gallagher, A large sieve density estimate near σ = 1, Invent. Math. 11 (1970), 329-339. Zbl0219.10048
  2. [2] D. R. Heath-Brown, Prime numbers in short intervals and a generalized Vaughan's identity, Canad. J. Math. 34 (1982), 1365-1377. Zbl0478.10024
  3. [3] L. K. Hua, Some results in the additive prime number theory, Quart. J. Math. 9 (1938), 68-80. Zbl0018.29404
  4. [4] J. Y. Liu and T. Zhan, Estimation of exponential sums over primes in short intervals II, in: Analytic Number Theory, Proceedings of a Conference in Honor of Heini Halberstam, Vol. 2, Birkhäuser, 1996, 571-606. Zbl0858.11044
  5. [5] H. Mikawa, On the sum of a prime and a square, Tsukuba J. Math. 17 (1993), 299-310. Zbl0802.11037
  6. [6] A. Perelli and J. Pintz, On the exceptional set for Goldbach's problem in short intervals, J. London Math. Soc. (2) 47 (1993), 41-49. Zbl0806.11042
  7. [7] A. Perelli and J. Pintz, Hardy-Littlewood numbers in short intervals, J. Number Theory 54 (1995), 297-308. Zbl0851.11056
  8. [8] A. Perelli and A. Zaccagnini, On the sum of a prime and a k-th power, Izv. Ross. Akad. Nauk Mat. 59 (1995), no. 1, 185-200. Zbl0996.11065
  9. [9] B. Saffari and R. C. Vaughan, On the fractional parts of x/n and related sequences. II, Ann. Inst. Fourier (Grenoble) 27 (1977), no. 2, 1-30. Zbl0379.10023
  10. [10] W. Schwarz, Zur Darstellung von Zahlen durch Summen von Primzahlpotenzen. II, J. Reine Angew. Math. 206 (1961), 78-112. 
  11. [11] E. C. Titchmarsh, The Theory of the Riemann Zeta-Function, 2nd ed., Clarendon Press, Oxford, 1986. Zbl0601.10026
  12. [12] A. Zaccagnini, The exceptional set for the sum of a prime and a k-th power, Mathematika 39 (1992), 400-421. Zbl0760.11026
  13. [13] T. Zhan and J. Y. Liu, On a theorem of Hua, Arch. Math. (Basel) 69 (1997), 375-390. Zbl0898.11038

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.