# Distribution of values of Hecke characters of infinite order

Acta Arithmetica (1998)

- Volume: 85, Issue: 3, page 279-291
- ISSN: 0065-1036

## Access Full Article

top## Abstract

top## How to cite

topC. S. Rajan. "Distribution of values of Hecke characters of infinite order." Acta Arithmetica 85.3 (1998): 279-291. <http://eudml.org/doc/207169>.

@article{C1998,

abstract = {We show that the number of primes of a number field K of norm at most x, at which the local component of an idele class character of infinite order is principal, is bounded by O(x exp(-c√(log x))) as x → ∞, for some absolute constant c > 0 depending only on K.},

author = {C. S. Rajan},

journal = {Acta Arithmetica},

keywords = {distribution of values of Hecke characters; Riemann hypothesis},

language = {eng},

number = {3},

pages = {279-291},

title = {Distribution of values of Hecke characters of infinite order},

url = {http://eudml.org/doc/207169},

volume = {85},

year = {1998},

}

TY - JOUR

AU - C. S. Rajan

TI - Distribution of values of Hecke characters of infinite order

JO - Acta Arithmetica

PY - 1998

VL - 85

IS - 3

SP - 279

EP - 291

AB - We show that the number of primes of a number field K of norm at most x, at which the local component of an idele class character of infinite order is principal, is bounded by O(x exp(-c√(log x))) as x → ∞, for some absolute constant c > 0 depending only on K.

LA - eng

KW - distribution of values of Hecke characters; Riemann hypothesis

UR - http://eudml.org/doc/207169

ER -

## References

top- [Dav] H. Davenport, Multiplicative Number Theory, 2nd ed., Grad. Texts in Math. 74, Springer, New York, 1980.
- [He] E. Hecke, Eine neue Art von Zetafunktionen und ihre Beziehungen zur Verteilung der Primzahlen, Zweite Mitteilung, Math. Z. 6 (1920), 11-51; reprinted in Mathematische Werke, Vandenhoeck & Ruprecht, Göttingen, 1959, 249-289.
- [KN] L. Kuipers and H. Niederreiter, Uniform Distribution of Sequences, Wiley, New York, 1974. Zbl0281.10001
- [LO] J. Lagarias and A. M. Odlyzko, Effective versions of the Chebotarev density theorem, in: Algebraic Number Fields, A. Fröhlich (ed.), Academic Press, New York, 1977, 409-464. Zbl0362.12011
- [La] S. Lang, Algebraic Number Theory, Grad. Texts in Math. 110, Springer, New York, 1986.
- [LT] S. Lang and H. Trotter, Frobenius Distributions in GL₂ Extensions, Lecture Notes in Math. 504, Springer, New York, 1976.
- [MR] M. R. Murty and C. S. Rajan, Stronger multiplicity one theorems for forms of general type on GL₂, in: Analytic Number Theory, Proc. Conf. in Honor of Heini Halberstam, Vol. 2, B. C. Berndt, H. G. Diamond and A. J. Hildebrand (eds.), Birkhäuser, Boston, 1996, 669-683. Zbl0874.11041
- [VKM] V. K. Murty, Explicit formulae and the Lang-Trotter conjecture, Rocky Mountain J. Math. 15 (1985), 535-551. Zbl0587.14009