Distribution of values of Hecke characters of infinite order

C. S. Rajan

Acta Arithmetica (1998)

  • Volume: 85, Issue: 3, page 279-291
  • ISSN: 0065-1036

Abstract

top
We show that the number of primes of a number field K of norm at most x, at which the local component of an idele class character of infinite order is principal, is bounded by O(x exp(-c√(log x))) as x → ∞, for some absolute constant c > 0 depending only on K.

How to cite

top

C. S. Rajan. "Distribution of values of Hecke characters of infinite order." Acta Arithmetica 85.3 (1998): 279-291. <http://eudml.org/doc/207169>.

@article{C1998,
abstract = {We show that the number of primes of a number field K of norm at most x, at which the local component of an idele class character of infinite order is principal, is bounded by O(x exp(-c√(log x))) as x → ∞, for some absolute constant c > 0 depending only on K.},
author = {C. S. Rajan},
journal = {Acta Arithmetica},
keywords = {distribution of values of Hecke characters; Riemann hypothesis},
language = {eng},
number = {3},
pages = {279-291},
title = {Distribution of values of Hecke characters of infinite order},
url = {http://eudml.org/doc/207169},
volume = {85},
year = {1998},
}

TY - JOUR
AU - C. S. Rajan
TI - Distribution of values of Hecke characters of infinite order
JO - Acta Arithmetica
PY - 1998
VL - 85
IS - 3
SP - 279
EP - 291
AB - We show that the number of primes of a number field K of norm at most x, at which the local component of an idele class character of infinite order is principal, is bounded by O(x exp(-c√(log x))) as x → ∞, for some absolute constant c > 0 depending only on K.
LA - eng
KW - distribution of values of Hecke characters; Riemann hypothesis
UR - http://eudml.org/doc/207169
ER -

References

top
  1. [Dav] H. Davenport, Multiplicative Number Theory, 2nd ed., Grad. Texts in Math. 74, Springer, New York, 1980. 
  2. [He] E. Hecke, Eine neue Art von Zetafunktionen und ihre Beziehungen zur Verteilung der Primzahlen, Zweite Mitteilung, Math. Z. 6 (1920), 11-51; reprinted in Mathematische Werke, Vandenhoeck & Ruprecht, Göttingen, 1959, 249-289. 
  3. [KN] L. Kuipers and H. Niederreiter, Uniform Distribution of Sequences, Wiley, New York, 1974. Zbl0281.10001
  4. [LO] J. Lagarias and A. M. Odlyzko, Effective versions of the Chebotarev density theorem, in: Algebraic Number Fields, A. Fröhlich (ed.), Academic Press, New York, 1977, 409-464. Zbl0362.12011
  5. [La] S. Lang, Algebraic Number Theory, Grad. Texts in Math. 110, Springer, New York, 1986. 
  6. [LT] S. Lang and H. Trotter, Frobenius Distributions in GL₂ Extensions, Lecture Notes in Math. 504, Springer, New York, 1976. 
  7. [MR] M. R. Murty and C. S. Rajan, Stronger multiplicity one theorems for forms of general type on GL₂, in: Analytic Number Theory, Proc. Conf. in Honor of Heini Halberstam, Vol. 2, B. C. Berndt, H. G. Diamond and A. J. Hildebrand (eds.), Birkhäuser, Boston, 1996, 669-683. Zbl0874.11041
  8. [VKM] V. K. Murty, Explicit formulae and the Lang-Trotter conjecture, Rocky Mountain J. Math. 15 (1985), 535-551. Zbl0587.14009

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.