Factors of sums of powers of binomial coefficients
Acta Arithmetica (1998)
- Volume: 86, Issue: 1, page 17-26
- ISSN: 0065-1036
Access Full Article
topHow to cite
topReferences
top- [1] N. G. de Bruijn, Asymptotic Methods in Analysis, Dover, New York, 1981. Zbl0556.41021
- [2] N. J. Calkin, A curious binomial identity, Discrete Math. 131 (1994), 335-337. Zbl0799.05005
- [3] M.-D. Choi, G. A. Elliott and N. Yui, Gauss polynomials and the rotation algebra, Invent. Math. 99 (1990), 225-246. Zbl0665.46051
- [4] J. Désarménien, Un analogue des congruences de Kummer pour les q-nombres d'Euler, European J. Combin. 3 (1982), 19-28. Zbl0485.05006
- [5] A. J. Granville, Zaphod Beeblebrox's brain and the fifty-ninth row of Pascal's triangle, Amer. Math. Monthly 99 (1992), 318-331. Zbl0757.05003
- [6] A. J. Granville, The arithmetic properties of binomial coefficients, in: Proceedings of the Organic Mathematics Workshop, 1996, http://www.cecm.sfu.ca/organics/papers/granville/index.html (URL verified September 10, 1997).
- [7] G. Olive, Generalized powers, Amer. Math. Monthly 72 (1965), 619-627. Zbl0215.07003
- [8] M. Petkovšek, H. S. Wilf and D. Zeilberger, A = B, A. K. Peters, Wellesley, Mass., 1996.